What is the percentage of recurrence risk for autosomal recessive diseases?

1. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol (2007) 8:880–93. 10.1038/nrm2278 [PubMed] [CrossRef] [Google Scholar]

2. Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell (2009) 137:32–45. 10.1016/j.cell.2009.03.023 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Nigg EA, Raff JW. Centrioles, centrosomes, and cilia in health and disease. Cell (2009) 139:134. 10.1016/j.cell.2009.10.036 [PubMed] [CrossRef] [Google Scholar]

4. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med (2011) 364:1533–43. 10.1056/NEJMra1010172 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Bergmann C. ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol (2015) 30(1):15–30. 10.1007/s00467-013-2706-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Sweeney WE, Jr, Avner ED. Diagnosis and management of childhood polycystic kidney disease. Pediatr Nephrol (2011) 26:675–92. 10.1007/s00467-010-1656-1 [PubMed] [CrossRef] [Google Scholar]

7. Drenth JP, Chrispijn M, Bergmann C. Congenital fibrocystic liver diseases. Best Pract Res Clin Gastroenterol (2010) 24:573–84. 10.1016/j.bpg.2010.08.007 [PubMed] [CrossRef] [Google Scholar]

8. Bergmann C, Weiskirchen R. It’s not all in the cilium, but on the road to it: genetic interaction network in polycystic kidney and liver diseases and how trafficking and quality control matter. J Hepatol (2012) 56:1201–3. 10.1016/j.jhep.2011.10.014 [PubMed] [CrossRef] [Google Scholar]

9. Jensen VL, Li C, Bowie RV, Clarke L, Mohan S, Blacque OE, et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J (2015) 34:2537–56. 10.15252/embj.201488044 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Reiter JF, Blacque OE, Leroux MR. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep (2012) 13:608–18. 10.1038/embor.2012.73 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Guay-Woodford LM. Autosomal recessive polycystic kidney disease: the prototype of the hepato-renal fibrocystic diseases. J Pediatr Genet (2014) 3:89–101. 10.3233/PGE-14092 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Wang S, Luo Y, Wilson PD, Witman GB, Zhou J. The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol (2004) 15:592–602. 10.1097/01.ASN.0000113793.12558.1D [PubMed] [CrossRef] [Google Scholar]

13. Liebau MC, Bergmann C. In: Geary DF, Schaefer F, editors. Polycystic Kidney Disease: ADPKD and ARPKD. Pediatric Kidney Disease. Berlin, Heidelberg: Springer; (2016). [Google Scholar]

14. Bergmann C, Küpper F, Dornia C, Schneider F, Senderek J, Zerres K. Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat (2005) 25:225–31. 10.1002/humu.20145 [PubMed] [CrossRef] [Google Scholar]

15. Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics (2003) 111:1072–80. 10.1542/peds.111.5.1072 [PubMed] [CrossRef] [Google Scholar]

16. Gunay-Aygun M, Avner ED, Bacallao RL, Choyke PL, Flynn JT, Germino GG, et al. Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis: summary statement of a first National Institutes of Health/Office of Rare Diseases Conference. J Pediatr (2006) 149:159–64. 10.1016/j.jpeds.2006.03.014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Kääriäinen H. Polycystic kidney disease in children: a genetic and epidemiological study of 82 Finnish patients. J Med Genet (1987) 24:474–81. 10.1136/jmg.24.8.474 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Adeva M, El-Youssef M, Rossetti S, Kamath PS, Kubly V, Consugar MB, et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore) (2006) 85(1):1–21. 10.1097/01.md.0000200165.90373.9a [PubMed] [CrossRef] [Google Scholar]

19. Bergmann C, Senderek J, Windelen E. Clinical consequences of PKHD1 mutations in 164 patients with autosomal recessive polycystic kidney disease (ARPKD). Kidney Int (2005) 67:829–48. 10.1111/j.1523-1755.2005.00148.x [PubMed] [CrossRef] [Google Scholar]

20. Avni FE, Guissard G, Hall M, Janssen F, DeMaertelaer V, Rypens F. Hereditary polycystic kidney diseases in children: changing sonographic patterns through childhood. Pediatr Radiol (2002) 32:169–74. 10.1007/s00247-001-0624-0 [PubMed] [CrossRef] [Google Scholar]

21. Turkbey B, Ocak I, Daryanani K. Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF). Pediatr Radiol (2009) 39:100–11. 10.1007/s00247-008-1064-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Desmet VJ. Ludwig symposium on biliary disorders-part I. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc (1998) 73:80–9. 10.4065/73.1.80 [PubMed] [CrossRef] [Google Scholar]

23. Telega G, Cronin D, Avner ED. New approaches to the autosomal recessive polycystic kidney disease patient with dual kidney-liver complications. Pediatr Transplant (2013) 17:328–35. 10.1111/petr.12076 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Rossetti S, Torra R, Coto E, Consugar M, Kubly V, Malaga S, et al. A complete mutation screen of PKHD1 in autosomal recessive polycystic kidney pedigrees. Kidney Int (2003) 64:391–403. 10.1046/j.1523-1755.2003.00111.x [PubMed] [CrossRef] [Google Scholar]

25. Gallagher AR, Esquivel EL, Briere TS, Tian X, Mitobe M, Menezes LF, et al. Biliary and pancreatic dysgenesis in mice harboring a mutation in Pkhd1. Am J Pathol (2008) 172:417–29. 10.2353/ajpath.2008.070381 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Garcia-Gonzalez MA, Menezes LF, Piontek KB, Kaimori J, Huso DL, Watnick T, et al. Genetic interaction studies link autosomal dominant and recessive polycystic kidney disease in a common pathway. Hum Mol Genet (2007) 16:1940–50. 10.1093/hmg/ddm141 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Moser M, Matthiesen S, Kirfel J. A mouse model for cystic biliary dysgenesis in autosomal recessive polycystic kidney disease (ARPKD). Hepatology (2005) 41:1113–21. 10.1002/hep.20655 [PubMed] [CrossRef] [Google Scholar]

28. Woollard JR, Punyashtiti R, Richardson S, Masyuk TV, Whelan S, Huang BQ, et al. A mouse model of autosomal recessive polycystic kidney disease with biliary duct and proximal tubule dilatation. Kidney Int (2007) 72:328–36. 10.1038/sj.ki.5002294 [PubMed] [CrossRef] [Google Scholar]

29. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet (2002) 30:259–69. 10.1038/ng833 [PubMed] [CrossRef] [Google Scholar]

30. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet (2002) 70:1305–17. 10.1086/340448 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Nagasawa Y, Matthiesen S, Onuchic LF, Hou X, Bergmann C, Esquivel E, et al. Identification and characterization of Pkhd1, the mouse orthologue of the human ARPKD gene. J Am Soc Nephrol (2002) 13:2246–58. 10.1097/01.ASN.0000030392.19694.9D [PubMed] [CrossRef] [Google Scholar]

32. Follit JA, Li L, Vucica Y, Pazour GJ. The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J Cell Biol (2010) 188:21–8. 10.1083/jcb.200910096 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Bergmann C. Zystische Nierenerkrankungen und Ziliopathien. Pädiatrie up2date (2014) 9:151–80. 10.1055/s-0034-1365722 [CrossRef] [Google Scholar]

34. Masyuk TV, Huang BQ, Ward CJ, Masyuk AI, Yuan D, Splinter PL, et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology (2003) 125:1303–10. 10.1016/j.gastro.2003.09.001 [PubMed] [CrossRef] [Google Scholar]

35. Menezes LF, Cai Y, Nagasawa Y, Silva AM, Watkins ML, Da Silva AM, et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int (2004) 66:1345–55. 10.1111/j.1523-1755.2004.00844.x [PubMed] [CrossRef] [Google Scholar]

36. Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S, et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet (2003) 12:2703–10. 10.1093/hmg/ddg274 [PubMed] [CrossRef] [Google Scholar]

37. Zhang MZ, Mai W, Li C, Cho SY, Hao C, Moeckel G, et al. PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci U S A (2004) 101:2311–6. 10.1073/pnas.0400073101 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med (2009) 60:321–37. 10.1146/annurev.med.60.101707.125712 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Hiesberger T, Gourley E, Erickson A, Koulen P, Ward CJ, Masyuk TV, et al. Proteolytic cleavage and nuclear translocation of fibrocystin is regulated by intracellular Ca2+ and activation of protein kinase C. J Biol Chem (2006) 281:34357–64. 10.1074/jbc.M606740200 [PubMed] [CrossRef] [Google Scholar]

40. Kaimori JY, Nagasawa Y, Menezes LF, Garcia-Gonzalez MA, Deng J, Imai E, et al. Polyductin undergoes notch-like processing and regulated release from primary cilia. Hum Mol Genet (2007) 16:942–56. 10.1093/hmg/ddm039 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Rossetti S, Chauveau D, Walker D, Saggar-Malik A, Winearls CG, Torres VE, et al. A complete mutation screen of the ADPKD genes by DHPLC. Kidney Int (2002) 61:1588–99. 10.1046/j.1523-1755.2002.00326.x [PubMed] [CrossRef] [Google Scholar]

42. Bergmann C, Senderek J, Sedlacek B, Pegiazoglou I, Puglia P, Eggermann T, et al. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol (2003) 14:76–89. 10.1097/01.ASN.0000039578.55705.6E [PubMed] [CrossRef] [Google Scholar]

43. Bergmann C, Senderek J, Küpper F, Schneider F, Dornia C, Windelen E, et al. PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat (2004) 23:453–63. [PubMed] [Google Scholar]

44. Bergmann C, Senderek J, Schneider F, Dornia C, Küpper F, Eggermann T, et al. PKHD1 mutations in families requesting prenatal diagnosis for autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat (2004) 23:487–95. 10.1002/humu.20019 [PubMed] [CrossRef] [Google Scholar]

45. Furu L, Onuchic LF, Gharavi A, Hou X, Esquivel EL, Nagasawa Y, et al. Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J Am Soc Nephrol (2003) 14:2004–14. 10.1097/01.ASN.0000078805.87038.05 [PubMed] [CrossRef] [Google Scholar]

46. Losekoot M, Haarloo C, Ruivenkamp C, White SJ, Breuning MH, Peters DJ. Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD). Hum Genet (2005) 118:185–206. 10.1007/s00439-005-0027-7 [PubMed] [CrossRef] [Google Scholar]

47. Gunay-Aygun M, Tuchman M, Font-Montgomery E, Lukose L, Edwards H, Garcia A, et al. PKHD1 sequence variations in 78 children and adults with autosomal recessive polycystic kidney disease and congenital hepatic fibrosis. Mol Genet Metab (2010) 99:160–73. 10.1016/j.ymgme.2009.10.010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Gunay-Aygun M, Font-Montgomery E, Lukose L, Tuchmann M, Graf J, Bryant JC, et al. Correlation of kidney function, volume and imaging findings, and PKHD1 mutations in 73 patients with autosomal recessive polycystic kidney disease. Clin J Am Soc Nephrol (2010) 5:972–84. 10.2215/CJN.07141009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet (2005) 42:737–48. 10.1136/jmg.2004.029538 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Bergmann C, Frank V, Küpper F, Schmidt C, Senderek J, Zerres K. Functional analysis of PKHD1 splicing in autosomal recessive polycystic kidney disease. J Hum Genet (2006) 51:788–93. 10.1007/s10038-006-0022-4 [PubMed] [CrossRef] [Google Scholar]

51. Bergmann C, Küpper F, Schmitt CP, Vester U, Neuhaus TJ, Senderek J, et al. Multi-exon deletions of the PKHD1 gene cause autosomal recessive polycystic kidney disease (ARPKD). J Med Genet (2005) 42:e63. 10.1136/jmg.2005.032318 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Bergmann C. Autosomal Recessive Polycystic Kidney Disease. Oxford: Oxford University Press; (2014). [Google Scholar]

53. Krall P, Pineda C, Ruiz P, Ejarque L, Vendrell T, Camacho JA, et al. Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease. Pediatr Nephrol (2013) 29(2):223–34. 10.1007/s00467-013-2657-7 [PubMed] [CrossRef] [Google Scholar]

54. Boddu R, Yang C, O’Connor AK, Hendrickson RC, Boone B, Cui X, et al. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1. J Mol Med (2014) 92:1045–56. 10.1007/s00109-014-1185-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Frank V, Zerres K, Bergmann C. Transcriptional complexity in autosomal recessive polycystic kidney disease. Clin J Am Soc Nephrol (2014) 9:1729–36. 10.2215/CJN.00920114 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Deget F, Rudnik-Schoneborn S, Zerres K. Course of autosomal recessive polycystic kidney disease (ARPKD) in siblings: a clinical comparison of 20 sibships. Clin Genet (1995) 47:248–53. 10.1111/j.1399-0004.1995.tb04305.x [PubMed] [CrossRef] [Google Scholar]

57. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet (2007) 369:1287–301. 10.1016/S0140-6736(07)60601-1 [PubMed] [CrossRef] [Google Scholar]

58. Lu H, Galeano MCR, Ott E, Kaeslin G, Kausalya PJ, Kramer C, et al. Mutations in DZIP1L, which encodes a ciliary-transition zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet (2017) 49:1025–34. 10.1038/ng.3871 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Harris PC, Bae KT, Rossetti S, Torries VE, Grantham JJ, Chapman AB. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol (2006) 17:3013–9. 10.1681/ASN.2006080835 [PubMed] [CrossRef] [Google Scholar]

60. Cornec-Le Gall E, Audrézet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol (2013) 24:1006–13. 10.1681/ASN.2012070650 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, et al. Mutations in GANAB, encoding the glucosidase iialpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet (2016) 98:1193–207. 10.1016/j.ajhg.2016.05.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Torres VE, Harris PC. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int (2009) 76:149–68. 10.1038/ki.2009.128 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Bergmann C, von Bothmer J, Ortiz Brüchle N, Venghaus A, Frank V, Fehrenbach H, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol (2011) 22:2047–56. 10.1681/ASN.2010101080 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Kim I, Fu Y, Hui K, Moeckel G, Mai W, Li C, et al. Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol (2008) 19:455–68. 10.1681/ASN.2007070770 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y, et al. Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol (2007) 27:3241–52. 10.1128/MCB.00072-07 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Wu Y, Dai XQ, Li Q, Chen CX, Mai W, Hussain Z, et al. Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet (2006) 15:3280–92. 10.1093/hmg/ddl404 [PubMed] [CrossRef] [Google Scholar]

67. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature (2010) 465:1033–8. 10.1038/nature09144 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Eisenberger T, Decker C, Hiersche M, Hamann RC, Decker E, Neuber S, et al. An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney disease. PLoS One (2015) 10:e0116680. 10.1371/journal.pone.0116680 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Fedeles SV, Tian X, Gallagher AR, Mitobe M, Nishio S, Lee SH, et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet (2011) 43:639–47. 10.1038/ng.860 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med (2006) 355:1345–56. 10.1056/NEJMra055323 [PubMed] [CrossRef] [Google Scholar]

71. Shepherd CW, Gomez MR, Lie JT, Crowson CS. Causes of death in patients with tuberous sclerosis. Mayo Clin Proc (1991) 66:792–6. 10.1016/S0025-6196(12)61196-3 [PubMed] [CrossRef] [Google Scholar]

72. Kaelin WG, Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer (2008) 8:865–73. 10.1038/nrc2502 [PubMed] [CrossRef] [Google Scholar]

73. Huber TB, Walz G, Kuehn EW. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int (2010) 79:502–11. 10.1038/ki.2010.457 [PubMed] [CrossRef] [Google Scholar]

74. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A (2006) 103:5466–71. 10.1073/pnas.0509694103 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Verhave JC, Bech AP, Wetzels JF, Nijenhuis T. Hepatocyte nuclear factor 1beta-associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol (2016) 27:345–53. 10.1681/ASN.2015050544 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Moreno-De-Luca D, SGENE Consortium. Mulle JG, Simons Simplex Collection Genetics Consortium. Kaminsky EB, Sanders SJ, et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet (2010) 87:618–30. 10.1016/j.ajhg.2010.10.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Nagamani SC, Erez A, Shen J, Li C, Roeder E, Cox S, et al. Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12. Eur J Hum Genet (2010) 18:278–84. 10.1038/ejhg.2009.174 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Decramer S, Parant O, Beaufils S, Clauin S, Guillou C, Kessler S, et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol (2007) 18:923–33. 10.1681/ASN.2006091057 [PubMed] [CrossRef] [Google Scholar]

79. Hiesberger T, Bai Y, Shao X, McNally BT, Sinclair AM, Tian X, et al. Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest (2004) 113:814–25. 10.1172/JCI200420083 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Hoff S, Halbritter J, Epting D, Frank V, Nguyen TM, van Reeuwijk J, et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet (2013) 45:951–6. 10.1038/ng.2681 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol (2007) 18:1855–71. 10.1681/ASN.2006121344 [PubMed] [CrossRef] [Google Scholar]

82. Salomon R, Saunier S, Niaudet P. Nephronophthisis. Pediatr Nephrol (2009) 24:2333–44. 10.1007/s00467-008-0840-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Omran H. Nephronophthis and medullary cystic kidney disease. In: Geary DF, Schaefer F, editors. Comprehensive Pediatric Nephrology. Amsterdam: Elsevier; (2008). p. 143–54. [Google Scholar]

84. Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet (2008) 82:959–70. 10.1016/j.ajhg.2008.02.017 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Parisi MA. Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet (2009) 151C:326–40. 10.1002/ajmg.c.30229 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Xu HW, Yu SQ, Mei CL, Li MH. Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke (2011) 42:204–6. 10.1161/STROKEAHA.110.578740 [PubMed] [CrossRef] [Google Scholar]

87. Pirson Y, Chauveau D, Torres V. Management of cerebral aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol (2002) 13:269–76. [PubMed] [Google Scholar]

88. Huston J, III, Torres VE, Sulivan PP, Offord KP, Wiebers DO. Value of magnetic resonance angiography for the detection of intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol (1993) 3:1871–7. [PubMed] [Google Scholar]

89. Ruggieri PM, Poulos N, Masaryk TJ, Ross JS, Obuchowski NA, Awad IA, et al. Occult intracranial aneurysms in polycystic kidney disease: screening with MR angiography. Radiology (1994) 191:33–9. 10.1148/radiology.191.1.8134594 [PubMed] [CrossRef] [Google Scholar]

Page 2

PMC full text:

Copyright/LicenseRequest permission to reuse

Copyright © 2018 Bergmann.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Autosomal recessive polycystic kidney disease (ARPKD). (A) Baby with distended abdomen due to voluminous kidneys that lead to respiratory problems. (B) Abdominal situs of a perinatally demised ARPKD patient with symmetrically enlarged kidneys that maintain their reniform configuration. (C) Cross section of an ARPKD kidney with cortical extension of fusiform and cylindrical spaces arranged radially throughout the renal parenchyma from medulla to cortex. (D,E) Microscopically, fusiform dilations of renal collecting ducts and distal tubuli lined by columnar or cuboidal epithelium. These dilated collecting ducts run perpendicular to the renal capsule. (F) Obligatory hepatobiliary changes in ARPKD known as ductal plate malformation characterized by dysgenesis of the hepatic portal triad with hyperplastic biliary ducts and congenital hepatic fibrosis. (G–I) Renal ultrasound of young children with ARPKD demonstrating enlarged echogenic kidneys with fusiform dilations of collecting ducts and distal tubules arranged radially throughout the renal parenchyma from medulla to cortex.

Click on the image to see a larger version.

Última postagem

Tag