Observe o triângulo abaixo que tem como vértices A 1 2 B 3 4 ec 1 6 responda as questões 1 2 3 e 4

Para que os pontos P, Q e R sejam os vértices de um triângulo qualquer, eles não podem estar alinhados. Dessa forma, o valor do determinante da matriz formada pelas coordenadas dos pontos dados deverá ser diferente de zero.

Diagonal principal

1 * 4 * 1 = 4 3 * 1 * y = 3y

1 * 3 * 2 = 6

Diagonal secundária 1 * 4 * y = 4y 1 * 1 * 2 = 2

3 * 3 * 1 = 9

4 + 3y + 6 – (4y + 2 + 9) ≠ 0 4 + 3y + 6 – 4y – 2 – 9 ≠ 0 3y – 4y + 4 + 6 – 2 – 9 ≠ 0 –y + 10 – 11 ≠ 0 –y ≠ 11 – 10 –y ≠ 1

y ≠ –1

Temos que valor de y que torna o problema verdadeiro corresponde a –1.

Voltar a questão

Vamos determinar a área de um triângulo do ponto de vista da geometria analítica. Assim, considere três pontos quaisquer, não colineares, A (xa, ya), B (xb, yb) e C (xc, yc). Como esses pontos não são colineares, ou seja, não estão numa mesma reta, eles determinam um triângulo. A área desse triângulo será dada por:

Observe que a área será metade do módulo do determinante das coordenadas dos pontos A, B e C.
 

Exemplo 1. Calcule a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6). Solução: Primeiro passo é fazer o cálculo do determinante das coordenadas dos pontos A, B e C. Teremos:

Assim, obtemos:

Portanto, a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6) é 12. Exemplo 2. Determine a área do triângulo de vértices A (1, 3), B (2, 5) e C (-2,4). Solução: Primeiro devemos realizar o cálculo do determinante.

Não pare agora... Tem mais depois da publicidade ;)

Exemplo 3. Os pontos A (0, 0), B (0, -8) e C (x, 0) determinam um triângulo de área igual a 20. Encontre o valor de x. Solução: Sabemos que a área do triângulo de vértices A, B e C é 20. Então,

Por Marcelo Rigonatto Especialista em Estatística e Modelagem Matemática

Equipe Brasil Escola

Geometria Analítica - Matemática - Brasil Escola

O baricentro é um dos pontos notáveis do triângulo, que, por sua vez, é um dos mais simples polígonos conhecidos. Essa figura geométrica é vastamente estudada, e um dos pontos que merecem atenção é o conceito de baricentro.

Conhecemos como baricentro o centro de gravidade do triângulo. Para encontrá-lo, é necessário determinar as suas três medianas, bem como o ponto de encontro entre elas. Quando o triângulo está representado no plano cartesiano, para encontrar o baricentro, basta calcular a média aritmética entre os valores de x e de y para encontrar o par ordenado do baricentro.

Leia também: Como os triângulos são classificados?

Tópicos deste artigo

O que é o baricentro?

O baricentro é um ponto notável do triângulo.

O triângulo possui pontos importantes, conhecidos como pontos notáveis, e o baricentro é um deles, junto com o circuncentro, o incentro e o ortocentro. O baricentro é o centro de gravidade do triângulo e é representado pela letra G. Ele está localizado no encontro das medianas do triângulo.

A mediana de um triângulo é um segmento que parte de um vértice e vai até o ponto médio do lado oposto a esse vértice. Em um triângulo qualquer, é possível traçar as três medianas, cada uma delas partindo de um dos vértices.

Medianas do triângulo

Quando traçamos simultaneamente as três medianas, as três se encontram em um único ponto. Esse ponto, representado por G, é o baricentro.

O baricentro (G) é o ponto de encontro das três medianas do triângulo.

  • Propriedade 1: o baricentro é sempre um ponto interno do triângulo.

Como a mediana é sempre um segmento interno do triângulo, consequentemente o baricentro também é, independentemente da sua forma.

  • Propriedade 2: o baricentro divide a mediana em duas partes cuja razão é 1:2.

Analisando o triângulo representado anteriormente, temos que:

Não pare agora... Tem mais depois da publicidade ;)

Quando representado no plano cartesiano, é possível encontrar as coordenadas do baricentro do triângulo. Para isso, vamos calcular a média aritmética dos valores de x e também dos valores de y.

Representação do triângulo no plano cartesiano

Note que os vértices são A (xA, yA), B(xB, yB) e C (xC, yC), então, para encontrar as coordenadas do baricentro G (xG, yG), utilizamos a fórmula:

Veja também: Trigonometria em um triângulo qualquer

Exercícios resolvidos

Questão 1 – Podemos afirmar que o baricentro do triângulo cujos vértices são os pontos A(2,1), B (- 3, 5) e C (4,3) é o ponto:     

A) G (1,3).

B) G (3,1).

C) G (3,3).

D) G (-2,-1).

E) G ( -1,3).

Resolução

Alternativa A. Para encontrar as coordenadas do baricentro do triângulo, vamos calcular a média aritmética entre os valores de x nos pontos A, B e C e entre os valores de y nos mesmos pontos.

Sendo assim, o baricentro é o ponto G (1,3).

Questão 2 – Em uma cidade, serão instaladas três torres de telefonia para resolver o problema com a falha na rede e no sinal para os celulares. Acontece que as posições dessas torres foram planejadas de modo que o centro da cidade coincida com o baricentro do triângulo com vértices em A, B e C, que são as localizações das torres. Para escolher a posição das torres, definiu-se a prefeitura como a origem do eixo, e o centro da cidade se localiza no ponto (1,-1). Certificaram-se que as localizações dos pontos A e B seriam A(12, -6), B(-4,-10). Sendo assim, qual deve ser a localização do ponto C?

A) (3,8) B) (8,-13) C) (3,8) D) (-5, 13)

E) (-5, 8)

Resolução

Alternativa D. Sabemos que G é a localização do centro da cidade, que é o ponto de coordenadas (1,-1).

Seja (x,y) as coordenadas do ponto C, então:

Encontrando também o valor de y:

Desse modo, chegamos a C (-5, 13).

Por Raul Rodrigues de Oliveira
Professor de Matemática

Na Geometria Analítica, o cálculo da distância entre dois pontos permite encontrar a medida do segmento de reta que os une.

Utilize as questões a seguir para testar seus conhecimentos e tire suas dúvidas com as resoluções comentadas.

Questão 1

Qual a distância entre dois pontos que possuem as coordenadas P (–4,4) e Q (3,4)?

Esconder RespostaVer Resposta

Resposta correta: dPQ = 7.

Observe que as ordenadas (y) dos pontos são iguais, logo, o segmento de reta formado é paralelo ao eixo x. A distância então é dada pelo módulo da diferença entre as abscissas.

Substituindo as abscissas dos pontos na fórmula, temos

Veja a representação dos pontos no plano cartesiano.

dPQ = 7 u.c. (unidades de medida de comprimento).

Determine a distância entre os pontos R (2,4) e T (2,2).

Esconder RespostaVer Resposta

Resposta correta: dRT = 2.

As abscissas (x) das coordenadas são iguais, sendo assim, o segmento de reta formado está paralelo ao eixo y e a distância é dada pela diferença entre as ordenadas.

Substituindo as ordenadas na fórmula, temos

Observe a representação dos pontos no plano cartesiano.

dRT = 2 u.c. (unidades de medida de comprimento).

Veja também: Distância entre dois pontos

Questão 3

Sejam D (2,1) e C (5,3) dois pontos no plano cartesiano, qual a distância de DC?

Esconder RespostaVer Resposta

Resposta correta: dDC = .

Observe no plano cartesiano que o segmento de reta formado não está paralelo a nenhum eixo.

Sendo e

, podemos aplicar o Teorema de Pitágoras ao triângulo DCP.

Substituindo as coordenadas na fórmula, encontramos a distância entre os pontos da seguinte forma:

A distância entre os pontos é de dDC = u.c. (unidades de medida de comprimento).

Questão 4

O triângulo ABC possui as coordenadas A (2, 2), B (–4, –6) e C (4,–12). Qual o perímetro desse triângulo?

Esconder RespostaVer Resposta

Resposta correta:

1º passo: Calcular a distância entre os pontos A e B.

2º passo: Calcular a distância entre os pontos A e C.

3º passo: Calcular a distância entre os pontos B e C.

Podemos observar que o triângulo tem dois lados iguais dAB = dBC, sendo assim, o triângulo é isósceles e seu perímetro é:

Questão 5

Um móvel percorre a trajetória A→B→C.

Estando as medidas expressas em metros e, considerando o ponto A como a origem do sistema cartesiano, a distância percorrida pelo móvel é:

Esconder RespostaVer Resposta

A distância percorrida pelo móvel é, aproximadamente 8,60 m.

Aproximando a raiz quadrada de 13 para 3,60:

Questão 6

Em uma corrida de aventura através de uma floresta é necessário encontrar a localização de alguns pontos específicos por onde a equipe deve passar e registrar seu tempo. Na próxima etapa as equipes devem passar pelo ponto de localização P(5, c).

Além do mapa, as equipes receberam a informação de que o ponto P é equidistante da largada L(3, 6) e da chegada C(9, 4).

Com base nas informações, a ordenada c do ponto P é:

Esconder RespostaVer Resposta

Resposta correta: c = 1.

Como o ponto P é equidistante da posição da largada e da chegada, é verdadeiro que:

Elevando os dois membros ao quadrado, eliminamos as raízes.

Questão 7

(UFRGS) A distância entre os pontos A (-2, y) e B (6, 7) é 10. O valor de y é:

a) -1 b) 0 c) 1 ou 13 d) -1 ou 10

e) 2 ou 12

Esconder RespostaVer Resposta

Alternativa correta: c) 1 ou 13.

1º passo: Substituir os valores das coordenadas e da distância na fórmula.

2º passo: Eliminar a raiz elevando os dois termos ao quadrado e encontrar a equação que determina o y.

3º passo: Aplicar a fórmula de Bhaskara e encontrar as raízes da equação.

Para que a distância entre os pontos seja igual a 10, o valor de y deve ser 1 ou 13.

Questão 8

(UFES) Sendo A (3, 1), B (–2, 2) e C (4, –4) os vértices de um triângulo, ele é:

a) equilátero. b) retângulo e isósceles. c) isósceles e não retângulo. d) retângulo e não isósceles.

e) n.d.a.

Esconder RespostaVer Resposta

Alternativa correta: c) isósceles e não retângulo.

1º passo: Calcular a distância de AB.

2º passo: Calcular a distância de AC.

3º passo: Calcular a distância de BC.

4º passo: Julgar as alternativas.

a) ERRADA. Para um triângulo ser equilátero os três lados devem ter a mesma medida, mas o triângulo ABC tem um dos lados diferente.

b) ERRADA. O triângulo ABC não é retângulo pois não obedece ao Teorema de Pitágoras: o quadrado da hipotenusa é igual à soma dos catetos ao quadrado.

c) CORRETA. O triângulo ABC é isósceles, pois possui as medidas de dois lados iguais.

d) ERRADA. O triângulo ABC não é retângulo, mas é isósceles.

e) ERRADA. O triângulo ABC é isósceles.

Questão 9

(PUC-RJ) Se os pontos A = (–1, 0), B = (1, 0) e C = (x, y) são vértices de um triângulo equilátero, então a distância entre A e C é

a) 1 b) 2 c) 4

d)


e)

Esconder RespostaVer Resposta

Alternativa correta: b) 2.

Sendo os pontos A, B e C vértices de um triângulo equilátero, isso quer dizer que as distâncias entre os pontos são iguais, pois esse tipo de triângulo possui os três lados com a mesma medida.

Como os pontos A e B têm suas coordenadas, substituindo-as na fórmulas encontramos a distância.

Logo, dAB = dAC= 2.

Questão 10

(UFSC) Dados os pontos A (-1; -1), B (5; -7) e C (x; 2), determine x, sabendo que o ponto C é equidistante dos pontos A e B.

a) X = 8 b) X = 6 c) X = 15 d) X = 12

e) X = 7

Esconder RespostaVer Resposta

Alternativa correta: a) X = 8.

1º passo: Montar a fórmula para calcular as distâncias.

Se A e B são equidistantes de C, quer dizer que os pontos encontram-se à mesma distância. Logo, dAC = dBC e a fórmula para calcular é:

Anulando-se as raízes dos dois lados, temos:

2º passo: Resolver os produtos notáveis.

3º passo: Substituir os termos na fórmula e resolvê-la.

Para que o ponto C seja equidistante dos pontos A e B, o valor de x deve ser 8.

(Uel) Seja AC uma diagonal do quadrado ABCD. Se A = (-2, 3) e C = (0, 5), a área de ABCD, em unidades de área, é

a) 4 b) 4√2 c) 8 d) 8√2

e) 16

Esconder RespostaVer Resposta

Alternativa correta: a) 4.

1º passo: calcular a distância entre os pontos A e C.

2º passo: Aplicar o Teorema de Pitágoras.

Se a figura é um quadrado e o segmento de reta AC é sua diagonal, então quer dizer que o quadrado foi dividido em dois triângulos retângulos, com um ângulo interno de 90º.

Segundo o Teorema de Pitágoras, a soma do quadrado dos catetos equivale ao quadrado da hipotenusa.

3º passo: Calcular a área do quadrado.

Substituindo o valor do lado na fórmula da área do quadrado, temos:

Questão 12

(CESGRANRIO) A distância entre os pontos M (4,-5) e N (-1,7) do plano x0y vale:

a) 14 b) 13 c) 12 d) 9

e) 8

Esconder RespostaVer Resposta

Alternativa correta: b) 13.

Para calcular a distância entre os pontos M e N, basta substituir as coordenadas na fórmula.

Questão 13

(ETAM 2011) A distância do ponto (−1, −1) ao ponto (1, 1) é igual a:

a) 2√2; b) 3√2; c) 2√3;

d) 3√3.

Esconder RespostaVer Resposta

Resposta correta: a) 2√2

Fazendo:

A(-1,-1)
B(1, 1)

Questão 14

(UFRR 2017) Sabendo-se que a distância entre os pontos A (4,y) e B (1,2) é igual a 5, os valores de y são:

a) 6 e - 2 b) 2 + 2i e 2 - 2i c) 2 + 2√3 e 2 - 3√3 d) 2 e 0

e) 4 + 2√6 e 4 - 2√6

Esconder RespostaVer Resposta

Resposta correta: a) 6 e - 2

Para extrair a raiz, elevamos ambos os membros da equação ao quadrado.

Determinando o delta da equação do segundo grau:

Determinando as raízes da equação:

Desta forma, os valores 6 e -2 satisfazem y.

Veja também:

Professor Licenciado em Matemática e pós-graduado em Ensino da Matemática e Física (Fundamental II e Médio), com formação em Magistério (Fundamental I). Engenheiro Mecânico pela UERJ, produtor e revisor de conteúdos educacionais.

Última postagem

Tag