All chordates share a set of derived characters during at least some part of their life.

Recommended textbook solutions

All chordates share a set of derived characters during at least some part of their life.

Anatomy and Physiology

1st EditionOpenStax

599 solutions

All chordates share a set of derived characters during at least some part of their life.

Campbell Biology

11th EditionJane B. Reece, Lisa A. Urry, Michael L. Cain, Peter V Minorsky, Steven A. Wasserman

1,678 solutions

All chordates share a set of derived characters during at least some part of their life.

Anatomy And Physiology Coloring Workbook

12th EditionElaine Nicpon Marieb

922 solutions

All chordates share a set of derived characters during at least some part of their life.

Campbell Biology

11th EditionJane B. Reece, Lisa A. Urry, Michael L. Cain, Peter V Minorsky, Steven A. Wasserman

1,678 solutions

Learning Outcomes

  • Describe the distinguishing characteristics of chordates

Vertebrates are members of the kingdom Animalia and the phylum Chordata (Figure 1). The vertebrates exhibit two major innovations in their evolution from the invertebrate chordates. These innovations may be associated with the whole genome duplications that resulted in a quadruplication of the basic chordate genome, including the Hox gene loci that regulate the placement of structures along the three axes of the body. One of the first major steps was the emergence of the quadrupeds in the form of the amphibians. A second step was the evolution of the amniotic egg, which, similar to the evolution of pollen and seeds in plants, freed terrestrial animals from their dependence on water for fertilization and embryonic development. Within the amniotes, modifications of keratinous epidermal structures have given rise to scales, claws, hair, and feathers. The scales of reptiles sealed their skins against water loss, while hair and feathers provided insulation to support the evolution of endothermy, as well as served other functions such as camouflage and mate attraction in the vertebrate lineages that led to birds and mammals.

All chordates share a set of derived characters during at least some part of their life.

Figure 1. All chordates are deuterostomes possessing a notochord.

Characteristics of Chordata

Animals in the phylum Chordata share five key chacteristics that appear at some stage during their development: a notochord, a dorsal hollow (tubular) nerve cord, pharyngeal gill arches or slits, a post-anal tail, and an endostyle/thyroid gland (Figure 2). In some groups, some of these key chacteristics are present only during embryonic development.

The chordates are named for the notochord, which is a flexible, rod-shaped mesodermal structure that is found in the embryonic stage of all chordates and in the adult stage of some chordate species. It is strengthened with glycoproteins similar to cartilage and covered with a collagenous sheath. The notocord is located between the digestive tube and the nerve cord, and provides rigid skeletal support as well as a flexible location for attachment of axial muscles. In some chordates, the notochord acts as the primary axial support of the body throughout the animal’s lifetime. However, in vertebrates (craniates), the notochord is present only during embryonic development, at which time it induces the development of the neural tube and serves as a support for the developing embryonic body. The notochord, however, is not found in the postembryonic stages of vertebrates; at this point, it has been replaced by the vertebral column (that is, the spine).

All chordates share a set of derived characters during at least some part of their life.

Figure 2. In chordates, four common features appear at some point during development: a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail.

Practice Question

Which of the following statements about common features of chordates is true?

  1. The dorsal hollow nerve cord is part of the chordate central nervous system.
  2. In vertebrate fishes, the pharyngeal slits become the gills.
  3. Humans are not chordates because humans do not have a tail.
  4. Vertebrates do not have a notochord at any point in their development; instead, they have a vertebral column.

The dorsal hollow nerve cord is derived from ectoderm that rolls into a hollow tube during development. In chordates, it is located dorsally to the notochord. In contrast, the nervous system in protostome animal phyla is characterized by solid nerve cords that are located either ventrally and/or laterally to the gut. In vertebrates, the neural tube develops into the brain and spinal cord, which together comprise the central nervous system (CNS). The peripheral nervous system (PNS) refers to the peripheral nerves (including the cranial nerves) lying outside of the brain and spinal cord.

Pharyngeal slits are openings in the pharynx (the region just posterior to the mouth) that extend to the outside environment. In organisms that live in aquatic environments, pharyngeal slits allow for the exit of water that enters the mouth during feeding. Some invertebrate chordates use the pharyngeal slits to filter food out of the water that enters the mouth. The endostyle is a strip of ciliated mucus-producing tissue in the floor of the pharynx. Food particles trapped in the mucus are moved along the endostyle toward the gut. The endostyle also produces substances similar to thyroid hormones and is homologous with the thyroid gland in vertebrates. In vertebrate fishes, the pharyngeal slits are modified into gill supports, and in jawed fishes, into jaw supports. In tetrapods (land vertebrates), the slits are highly modified into components of the ear, and tonsils and thymus glands. In other vertebrates, pharyngeal arches, derived from all three germ layers, give rise to the oral jaw from the first pharyngeal arch, with the second arch becoming the hyoid and jaw support.

The post-anal tail is a posterior elongation of the body, extending beyond the anus. The tail contains skeletal elements and muscles, which provide a source of locomotion in aquatic species, such as fishes. In some terrestrial vertebrates, the tail also helps with balance, courting, and signaling when danger is near. In humans and other great apes, the post-anal tail is reduced to a vestigial coccyx (“tail bone”) that aids in balance during sitting.

Watch this video discussing the evolution of chordates and five characteristics that they share.


Try It

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More

What are derived characters that all chordates have at some time in their life?

Characteristics of Chordata Animals in the phylum Chordata share five key characteristics that appear at some stage during their development: a notochord, a dorsal hollow (tubular) nerve cord, pharyngeal gill arches or slits, a post-anal tail, and an endostyle/thyroid gland (Figure 29.3).

What characters do all chordates share?

Animals in the phylum Chordata share four key features: a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail.

Which characteristics do all chordates have at some point in their lifecycle?

Vertebrata all have the five defining characteristics of chordates at some point in their life cycle which are: 1) a notochord, 2) a dorsal hollow nerve cord, 3) an endostyle or thyroid, 4) pharyngeal slits, and 5) a post-anal tail.

What 4 derived characteristics do chordates all share?

In chordates, four common features appear at some point during development: a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail.