Is copper chloride soluble in water

Copper(II) chloride

Is copper chloride soluble in water

Anhydrous

Is copper chloride soluble in water

Anhydrous

Is copper chloride soluble in water

Dihydrate

Names
Other names

Cupric chloride

Identifiers

CAS Number

  • 7447-39-4 
    Is copper chloride soluble in water
  • 10125-13-0 (dihydrate) 
    Is copper chloride soluble in water

3D model (JSmol)

  • Interactive image
  • Interactive image

Beilstein Reference

8128168
ChEBI

  • CHEBI:49553 
    Is copper chloride soluble in water

ChEMBL

  • ChEMBL1200553 
    Is copper chloride soluble in water

ChemSpider

  • 148374 
    Is copper chloride soluble in water

DrugBank

  • DB09131

ECHA InfoCard 100.028.373
Is copper chloride soluble in water
EC Number

  • 231-210-2

Gmelin Reference

9300

PubChem CID

  • 24014

RTECS number

  • GL7000000

UNII

  • P484053J2Y 
    Is copper chloride soluble in water
  • S2QG84156O (dihydrate) 
    Is copper chloride soluble in water

UN number 2802

CompTox Dashboard (EPA)

  • DTXSID7040449
    Is copper chloride soluble in water

InChI

  • InChI=1S/2ClH.Cu/h2*1H;/q;;+2/p-2 

    Is copper chloride soluble in water

    Key: ORTQZVOHEJQUHG-UHFFFAOYSA-L 

    Is copper chloride soluble in water

  • InChI=1/2ClH.Cu/h2*1H;/q;;+2/p-2/rCl2Cu/c1-3-2

    Key: ORTQZVOHEJQUHG-LRIOHBSEAE

  • InChI=1/2ClH.Cu/h2*1H;/q;;+2/p-2

    Key: ORTQZVOHEJQUHG-NUQVWONBAE

SMILES

  • Cl[Cu]Cl

  • [Cu+2].[Cl-].[Cl-]

Properties

Chemical formula

CuCl2
Molar mass 134.45 g/mol (anhydrous)
170.48 g/mol (dihydrate)
Appearance yellow-brown solid (anhydrous)
blue-green solid (dihydrate)
Odor odorless
Density 3.386 g/cm3 (anhydrous)
2.51 g/cm3 (dihydrate)
Melting point 498 °C (928 °F; 771 K) (anhydrous)
100 °C (dehydration of dihydrate)
Boiling point 993 °C (1,819 °F; 1,266 K) (anhydrous, decomposes)

Solubility in water

70.6 g/100 mL (0 °C)
75.7 g/100 mL (25 °C)
107.9 g/100 mL (100 °C)
Solubility methanol:
68 g/100 mL (15 °C)


ethanol:
53 g/100 mL (15 °C)
soluble in acetone

Magnetic susceptibility (χ)

+1080·10−6 cm3/mol
Structure

Crystal structure

distorted CdI2 structure

Coordination geometry

Octahedral
Hazards
GHS labelling:

Pictograms

Is copper chloride soluble in water
Is copper chloride soluble in water
Is copper chloride soluble in water
Is copper chloride soluble in water

Signal word

Danger

Hazard statements

H301, H302, H312, H315, H318, H319, H335, H410, H411

Precautionary statements

P261, P264, P270, P271, P273, P280, P301+P310, P301+P312, P302+P352, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)

Is copper chloride soluble in water

2

0

1

Flash point Non-flammable
NIOSH (US health exposure limits):

PEL (Permissible)

TWA 1 mg/m3 (as Cu)[1]

REL (Recommended)

TWA 1 mg/m3 (as Cu)[1]

IDLH (Immediate danger)

TWA 100 mg/m3 (as Cu)[1]
Safety data sheet (SDS) Fisher Scientific
Related compounds

Other anions

Copper(II) fluoride
Copper(II) bromide

Other cations

Copper(I) chloride
Silver chloride
Gold(III) chloride

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Is copper chloride soluble in water
 verify (what is 
Is copper chloride soluble in water
Is copper chloride soluble in water
 ?)

Infobox references

Is copper chloride soluble in water

Copper(II) chloride dihydrate

Is copper chloride soluble in water

Copper(II) chloride anhydrous

Copper(II) chloride is the chemical compound with the chemical formula CuCl2. The anhydrous form is yellowish brown but slowly absorbs moisture to form a blue-green dihydrate.

Both the anhydrous and the dihydrate forms occur naturally as the very rare minerals tolbachite and eriochalcite, respectively.[2]

Structure[edit]

Anhydrous CuCl2 adopts a distorted cadmium iodide structure. In this motif, the copper centers are octahedral. Most copper(II) compounds exhibit distortions from idealized octahedral geometry due to the Jahn-Teller effect, which in this case describes the localization of one d-electron into a molecular orbital that is strongly antibonding with respect to a pair of chloride ligands. In CuCl2·2H2O, the copper again adopts a highly distorted octahedral geometry, the Cu(II) centers being surrounded by two water ligands and four chloride ligands, which bridge asymmetrically to other Cu centers.[3]

Copper(II) chloride is paramagnetic. Of historical interest, CuCl2·2H2O was used in the first electron paramagnetic resonance measurements by Yevgeny Zavoisky in 1944.[4][5]

Properties and reactions[edit]

Aqueous solutions of copper(II) chloride. Greenish when high in [Cl−], more blue when lower in [Cl−].

Aqueous solution prepared from copper(II) chloride contain a range of copper(II) complexes depending on concentration, temperature, and the presence of additional chloride ions. These species include blue color of [Cu(H2O)6]2+ and yellow or red color of the halide complexes of the formula [CuCl2+x]x−.[6]

Hydrolysis[edit]

Copper(II) hydroxide precipitates upon treating copper(II) chloride solutions with base:

CuCl2 + 2 NaOH → Cu(OH)2 + 2 NaCl

Is copper chloride soluble in water

Partial hydrolysis gives dicopper chloride trihydroxide, Cu2(OH)3Cl, a popular fungicide.

Redox[edit]

Copper(II) chloride is a mild oxidant. It decomposes to copper(I) chloride and chlorine gas near 1000 °C:

2 CuCl2 → 2 CuCl + Cl2

Copper(II) chloride (CuCl2) reacts with several metals to produce copper metal or copper(I) chloride (CuCl) with oxidation of the other metal. To convert copper(II) chloride to copper(I) chloride, it can be convenient to reduce an aqueous solution with sulfur dioxide as the reductant:

2 CuCl2 + SO2 + 2 H2O → 2 CuCl + 2 HCl + H2SO4

Coordination complexes[edit]

CuCl2 reacts with HCl or other chloride sources to form complex ions: the red CuCl3− (it is a dimer in reality, Cu2Cl62−, a couple of tetrahedrons that share an edge), and the green or yellow CuCl42−.[7]

CuCl
2
+ Cl
CuCl
3
CuCl
2
+ 2 Cl
CuCl2−
4

Some of these complexes can be crystallized from aqueous solution, and they adopt a wide variety of structures.

Copper(II) chloride also forms a variety of coordination complexes with ligands such as ammonia, pyridine and triphenylphosphine oxide:

CuCl2 + 2 C5H5N → [CuCl2(C5H5N)2] (tetragonal)CuCl2 + 2 (C6H5)3PO → [CuCl2((C6H5)3PO)2] (tetrahedral)

However "soft" ligands such as phosphines (e.g., triphenylphosphine), iodide, and cyanide as well as some tertiary amines induce reduction to give copper(I) complexes.

Preparation[edit]

Copper(II) chloride is prepared commercially by the action of chlorination of copper. Copper at red heat (300-400°C) combines directly with chlorine gas, giving (molten) copper (II) chloride. The reaction is very exothermic.

Cu(s) + Cl2(g) → CuCl2(l)

It is also commercially practical to combine copper(II) oxide with an excess of ammonium chloride at similar temperatures, producing copper chloride, ammonia, and water:[citation needed]

CuO + 2NH4Cl → CuCl2 + 2NH3 + H2O

Although copper metal itself cannot be oxidised by hydrochloric acid, copper-containing bases such as the hydroxide, oxide, or copper(II) carbonate can react to form CuCl2 in an acid-base reaction.

Once prepared, a solution of CuCl2 may be purified by crystallization. A standard method takes the solution mixed in hot dilute hydrochloric acid, and causes the crystals to form by cooling in a Calcium chloride (CaCl2)-ice bath.[8][9]

There are indirect and rarely used means of using copper ions in solution to form copper(II) chloride. Electrolysis of aqueous sodium chloride with copper electrodes produces (among other things) a blue-green foam that can be collected and converted to the hydrate. While this is not usually done due to the emission of toxic chlorine gas, and the prevalence of the more general chloralkali process, the electrolysis will convert the copper metal to copper ions in solution forming the compound. Indeed, any solution of copper ions can be mixed with hydrochloric acid and made into a copper chloride by removing any other ions.

Natural occurrence[edit]

Copper(II) chloride occurs naturally as the very rare anhydrous mineral tolbachite and the dihydrate eriochalcite.[2] Both are found near fumaroles and in some Cu mines.[10][11][12] More common are mixed oxyhydroxide-chlorides like atacamite Cu2(OH)3Cl, arising among Cu ore beds oxidation zones in arid climate (also known from some altered slags).

Uses[edit]

In organic synthesis[edit]

Co-catalyst in Wacker process[edit]

A major industrial application for copper(II) chloride is as a co-catalyst with palladium(II) chloride in the Wacker process. In this process, ethene (ethylene) is converted to ethanal (acetaldehyde) using water and air. During the reaction, PdCl2 is reduced to Pd, and the CuCl2 serves to re-oxidize this back to PdCl2. Air can then oxidize the resultant CuCl back to CuCl2, completing the cycle.

  1. C2H4 + PdCl2 + H2O → CH3CHO + Pd + 2 HCl
  2. Pd + 2 CuCl2 → 2 CuCl + PdCl2
  3. 4 CuCl + 4 HCl + O2 → 4 CuCl2 + 2 H2O

The overall process is:

2 C2H4 + O2 → 2 CH3CHO

Other organic synthetic applications[edit]

Copper(II) chloride has some highly specialized applications in the synthesis of organic compounds.[8] It affects chlorination of aromatic hydrocarbons—this is often performed in the presence of aluminium oxide. It is able to chlorinate the alpha position of carbonyl compounds:[13]

Is copper chloride soluble in water

This reaction is performed in a polar solvent such as dimethylformamide (DMF), often in the presence of lithium chloride, which accelerates the reaction.

CuCl2, in the presence of oxygen, can also oxidize phenols. The major product can be directed to give either a quinone or a coupled product from oxidative dimerization. The latter process provides a high-yield route to 1,1-binaphthol:[14]

Is copper chloride soluble in water

Such compounds are intermediates in the synthesis of BINAP and its derivatives.

Copper(II) chloride dihydrate promotes the hydrolysis of acetonides, i.e., for deprotection to regenerate diols[15] or aminoalcohols, as in this example (where TBDPS = tert-butyldiphenylsilyl):[16]

Is copper chloride soluble in water

CuCl2 also catalyses the free radical addition of sulfonyl chlorides to alkenes; the alpha-chlorosulfone may then undergo elimination with base to give a vinyl sulfone product.[citation needed]

In inorganic synthesis[edit]

Catalyst in production of chlorine[edit]

Copper(II) chloride is used as a catalyst in a variety of processes that produce chlorine by oxychlorination. The Deacon process takes place at about 400 to 450 °C in the presence of a copper chloride:

4 HCl + O2 → 2 Cl2 + 2 H2O

Copper(II) chloride catalyzes the chlorination in the production of vinyl chloride and dichloroethane.[17]

Copper(II) chloride is used in the Copper–chlorine cycle in which it splits steam into a copper oxygen compound and hydrogen chloride, and is later recovered in the cycle from the electrolysis of copper(I) chloride.

Niche uses[edit]

Copper(II) chloride is also used in pyrotechnics as a blue/green coloring agent. In a flame test, copper chlorides, like all copper compounds, emit green-blue.

In humidity indicator cards (HICs), cobalt-free brown to azure (copper(II) chloride base) HICs can be found on the market. In 1998, the European Community (EC) classified items containing cobalt(II) chloride of 0.01 to 1% w/w as T (Toxic), with the corresponding R phrase of R49 (may cause cancer if inhaled). As a consequence, new cobalt-free humidity indicator cards have been developed that contain copper.

Safety[edit]

Is copper chloride soluble in water

This section needs expansion. You can help by adding to it. (August 2021)

Copper(II) chloride can be toxic. Only concentrations below 5 ppm are allowed in drinking water by the US Environmental Protection Agency.[citation needed]

References[edit]

  1. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0150". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ a b Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nicolas C. Panagiotopoulos (1981) Copper chloride hydrate (eriochalcite), in Standard X-ray Diffraction Powder Patterns National Bureau of Standards, Monograph 25, Section 18; page 33.
  3. ^ Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  4. ^ Peter Baláž (2008). Mechanochemistry in Nanoscience and Minerals Engineering. Springer. p. 167. ISBN 978-3-540-74854-0.
  5. ^ Marina Brustolon (2009). Electron paramagnetic resonance: a practitioner's toolkit. John Wiley and Sons. p. 3. ISBN 978-0-470-25882-8.
  6. ^ Greenwood, N. N. and Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
  7. ^ Naida S. Gill; F. B. Taylor (1967). Tetrahalo Complexes of Dipositive Metals in the First Transition Series. Inorganic Syntheses. Vol. 9. pp. 136–142. doi:10.1002/9780470132401.ch37. ISBN 978-0-470-13240-1.
  8. ^ a b S. H. Bertz, E. H. Fairchild, in Handbook of Reagents for Organic Synthesis, Volume 1: Reagents, Auxiliaries and Catalysts for C-C Bond Formation, (R. M. Coates, S. E. Denmark, eds.), pp. 220-3, Wiley, New York, 1738.
  9. ^ W. L. F. Armarego; Christina Li Lin Chai (2009-05-22). Purification of Laboratory Chemicals (Google Books excerpt) (6th ed.). Butterworth-Heinemann. p. 461. ISBN 978-1-85617-567-8.
  10. ^ "Tolbachite".
  11. ^ "Eriochalcite".
  12. ^ "List of Minerals". 21 March 2011.
  13. ^ C. E. Castro; E. J. Gaughan; D. C. Owsley (1965). "Cupric Halide Halogenations". Journal of Organic Chemistry. 30 (2): 587. doi:10.1021/jo01013a069.
  14. ^ J. Brussee; J. L. G. Groenendijk; J. M. Koppele; A. C. A. Jansen (1985). "On the mechanism of the formation of s(−)-(1, 1'-binaphthalene)-2,2'-diol via copper(II)amine complexes". Tetrahedron. 41 (16): 3313. doi:10.1016/S0040-4020(01)96682-7.
  15. ^ Chandrasekhar, M.; Kusum L. Chandra; Vinod K. Singh (2003). "Total Synthesis of (+)-Boronolide, (+)-Deacetylboronolide, and (+)-Dideacetylboronolide". Journal of Organic Chemistry. 68 (10): 4039–4045. doi:10.1021/jo0269058. PMID 12737588.
  16. ^ Krishna, Palakodety Radha; G. Dayaker (2007). "A stereoselective total synthesis of (−)-andrachcinidine via an olefin cross-metathesis protocol". Tetrahedron Letters. Elsevier. 48 (41): 7279–7282. doi:10.1016/j.tetlet.2007.08.053.
  17. ^ H.Wayne Richardson, "Copper Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim, doi:10.1002/14356007.a07_567

Further reading[edit]

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. Lide, David R. (1990). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. Boca Raton: CRC Press. ISBN 0-8493-0471-7.
  3. The Merck Index, 7th edition, Merck & Co, Rahway, New Jersey, USA, 1960.
  4. D. Nicholls, Complexes and First-Row Transition Elements, Macmillan Press, London, 1973.
  5. A. F. Wells, 'Structural Inorganic Chemistry, 5th ed., Oxford University Press, Oxford, UK, 1984.
  6. J. March, Advanced Organic Chemistry, 4th ed., p. 723, Wiley, New York, 1992.
  7. Fieser & Fieser Reagents for Organic Synthesis Volume 5, p158, Wiley, New York, 1975.
  8. D. W. Smith (1976). "Chlorocuprates(II)". Coordination Chemistry Reviews. 21 (2–3): 93–158. doi:10.1016/S0010-8545(00)80445-2.
  • Copper Chloride at The Periodic Table of Videos (University of Nottingham)
  • Copper (II) Chloride – Description and Pictures
  • National Pollutant Inventory – Copper and compounds fact sheet

Is copper chloride insoluble or soluble?

Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid.

Is CuCl2 soluble or insoluble in water?

CuCl2 completely ionises in water hence it is completely soluble in water.

Why does copper chloride dissolve in water?

Since water molecules have slightly positive hydrogens and slightly negative oxygens, the positive part of copper chloride is attracted to the oxygen in water and the negative part of copper chloride is attracted to the hydrogens in water. So it's ionic because of its ability to dissolve in water.

Is CuCl2 aqueous or solid?

Copper (II) is the chemical compound that contains the chemical formula CuCl2. It is a light brown solid, gradually absorbing moisture to form a green-blue dihydrate.