Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Aqueles elementos representativos que possuem baixa energia de ionização perdem elétrons para se tornarem estáveis, ou seja, ficarem com a configuração de gás nobre. Já os com alta energia de ionização (ametais) recebem elétrons ao invés de perdê-los.

Como explicar energia de ionização?

A energia de ionização é a energia necessária para retirar um elétron de um átomo ou íon no estado gasoso. Os átomos no estado fundamental possuem a mesma quantidade de prótons (cargas positivas) e de elétrons (cargas negativas), ou seja, são neutros.

Qual família apresenta maior energia de ionização?

halogênios A família dos halogênios (A) apresenta sete elétrons na camada de valência e tem tendência a ganhar mais um elétron e formar ânions monovalentes, isto é, íons com carga -1. Por isso, entre os elementos apresentados, os halogênios são os que possuem maiores energias de ionização.

Qual dos elementos a seguir possui a menor primeira energia de ionização?

B - os metais alcalinos são os elementos que possuem os menores potenciais de ionização.

Qual é a alternativa na qual o átomo citado tem o menor potencial de ionização?

Assim, o hélio, que possui apenas uma camada eletrônica, é o que possui o átomo menor, com grande atração entre seu núcleo e os elétrons dessa camada, sendo necessária uma alta energia de ionização para retirar um de seus elétrons.

Quem tem mais energia de ionização?

1) O elemento com maior energia de ionização é o Hélio e o elemento com menor energia de ionização é o Césio. A energia de ionização é a energia necessária para remover um elétron do átomo no estado gasoso. É uma propriedade periódica e varia conforme o número atômico dos átomos dos elementos da Tabela Periódica.

Qual é a energia de ionização?

  • Química. Energia de Ionização, também denominada de Potencial de ionização, corresponde à energia mínima necessária para retirar um elétron de um átomo ou íon no estado gasoso. Ouvir: Energia de Ionização. Energia ou Potencial de Ionização. O átomo ou íon só perderá elétrons se ele receber energia suficiente, que é a energia de ionização.

Qual a energia necessária para a ionização do gás nobre?

  • A energia de ionização aumenta em uma linha no máximo periódico para os gases nobres que fecharam as conchas. Por exemplo, o sódio requer apenas 496 kJ / mol ou 5,14 eV / átomo para ionizá-lo. Por outro lado, o neon, o gás nobre, imediatamente anterior à tabela periódica, requer 2081 kJ / mol ou 21,56 eV / átomo.

Quais as energias de ionização para o carbono?

  • Considerando que na Tabela Periódica a energia de ionização cresce de baixo para cima e da esquerda para a direita, diga quais elementos são o X, o Y e o Z na tabela, respectivamente: As energias de ionização para o carbono são representadas na tabela a seguir. Esses valores correspondem respectivamente à:

Qual é o potencial de ionização?

  • Energia ou Potencial de Ionização. O átomo ou íon só perderá elétrons se ele receber energia suficiente, que é a energia de ionização. Na prática, o mais importante é primeiro potencial de ionização ou primeira energia de ionização, que corresponde à remoção do primeiro elétron. Ela costuma ser a menor energia de ionização, ...

Alternativa “a”.

Por meio das configurações eletrônicas dadas, sabemos as famílias as quais os elementos pertencem. Veja:

A: 1s2 2s2 2p6 3s2 3p5: família 17 ou VII A – família dos halogênios (é o cloro, Z=17);

B: 1s2 2s2 2p6 3s2 3p3: família 15 ou V A – família do nitrogênio (é o fósforo (P), Z=15);;

C: 1s2 2s2 2p6 3s2 3p1: família 13 ou III A – família do boro (é o alumínio, Z=13);;

D: 1s2 2s2 2p6 3s2: família 2 ou II A – família dos metais alcalinoterrosos (é o magnésio, Z=12);

E: 1s2 2s2 2p6 3s1: família 1 ou I A – família dos metais alcalinos (é o sódio, Z=11).

A família dos halogênios (A) apresenta sete elétrons na camada de valência e tem tendência a ganhar mais um elétron e formar ânions monovalentes, isto é, íons com carga -1. Por isso, entre os elementos apresentados, os halogênios são os que possuem maiores energias de ionização.

Além disso, observe que esses elementos pertencem ao mesmo período (3º). Na tabela periódica, a energia de ionização cresce em um mesmo período da esquerda para a direita. Como os halogênios são os elementos mais à direita na tabela, a energia de ionização deles é a maior.

A energia de ionização, também conhecida como potencial de ionização, é a energia mínima necessária para “arrancar” um elétron de um átomo isolado e no estado gasoso.

O potencial de ionização é uma propriedade periódica, pois quanto maior o tamanho do átomo ou do raio atômico, ou seja, quanto maior for o número atômico, menor será a energia de ionização, porque os elétrons estarão mais afastados do núcleo e a força de atração entre eles será menor.

Portanto, a variação da energia de ionização na tabela periódica, numa mesma família, aumenta de baixo para cima, e, num mesmo período, da esquerda para a direita.

Isso é mostrado abaixo, além dos valores das energias de ionização de vários elementos.

Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Esse crescimento é inversamente proporcional ao crescimento do raio atômico. É por isso que, conforme visto no texto “Raio atômico: O tamanho do átomo”, o sentido do crescimento dele na Tabela Periódica é exatamente o contrário (de cima para baixo, da direita para a esquerda) do sentido do aumento da energia de ionização.

Outro aspecto importante é que, quando analisamos a primeira e a segunda energia de ionização de um sódio (veja a tabela abaixo), verifica-se que a segunda energia de ionização é sempre maior que a primeira. E a terceira energia de ionização é ainda maior:

Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Esse fato ocorre porque quanto mais elétrons se retiram, maior será a atração que o núcleo exercerá sobre os demais elétrons. Consequentemente, haverá um aumento na energia de ionização; ou seja, será necessário fornecer mais energia para romper essa atração com o núcleo.

Por exemplo, considere o caso do magnésio. Como ele pertence à família 2, ele possui dois elétrons na camada de valência. Assim, a energia de ionização para retirar um desses elétrons é 738 kJ . mol-1. Já para retirar o segundo elétron, essa energia aumenta para 1450 kJ . mol-1. Com isso, ele fica com apenas duas camadas ou níveis eletrônicos; portanto, os elétrons estão muito próximos e atraídos ao núcleo. Sua camada de valência agora possui 8 elétrons e para retirar mais um desses elétrons será necessário muito mais energia que na primeira e na segunda energia de ionização (7730 kJ . mol-1). Por esse motivo, o magnésio é encontrado na natureza com a carga +2.

Veja também que as primeiras energias de ionização do fósforo (P), do enxofre (S) e do cloro (Cl) são altas e por isso esses elementos não são encontrados na natureza com carga positiva.  

Os ametais possuem energia de ionização alta, porque, assim como os outros elementos representativos, eles têm a tendência de adquirir a configuração eletrônica do gás nobre mais próximo (regra do octeto) e, para isso, eles precisam receber elétrons e não perder, como foi visto neste texto.

A energia de ionização é a energia necessária para retirar um elétron de um átomo ou íon no estado gasoso.

Os átomos no estado fundamental possuem a mesma quantidade de prótons (cargas positivas) e de elétrons (cargas negativas), ou seja, são neutros. Mas na formação das ligações iônicas, ocorre a extração de um ou mais elétrons da camada de valência do átomo, que são transferidos para outro átomo, resultando na formação de íons. O átomo que perdeu os elétrons transforma-se em um cátion (espécie carregada positivamente).

Para “arrancar” esses elétrons do átomo isolado ou de um íon, é necessário aplicar uma determinada quantidade de energia, que é chamada de energia de ionização (porque houve a formação de íons) ou potencial de ionização. Assim, podemos fazer a seguinte definição:

Energia de ionização ou potencial de ionização é a energia aplicada para retirar um elétron do átomo (ou do íon) isolado no estado gasoso.”

X(g) → X+(g) + e-               I = E(X+) - E(X)

Os valores das energias de ionização podem ser expressos em eletrovolts (eV), mas de acordo com o SI (Sistema Internacional de Unidades), eles devem ser expressos em kJ/mol.

Quando se retira o primeiro elétron de um átomo neutro, há a primeira energia de ionização (I1). Já a energia necessária para retirar o segundo elétron desse cátion que foi formado é chamada de segunda energia de ionização (I2) e assim por diante. A primeira energia de ionização é sempre menor que a segunda energia de ionização e assim sucessivamente. Isso acontece porque, no primeiro caso, o elétron está na camada mais externa ao núcleo e, como está mais longe dos prótons, a atração entre eles é menor, sendo mais fácil retirar o elétron.

Por exemplo, consideremos um átomo de cobre (Cu(g)) que possui quatro níveis de energia no estado fundamental e um elétron no subnível mais externo (4s1):

29Cu +785 kJ/mol → 29Cu+ + e-
29Cu + 1955 kJ/mol → 29Cu2+ + e-

Veja que a segunda energia de ionização foi maior do que a primeira. Isso nos mostra que a energia de ionização é uma propriedade periódica, que varia conforme o número atômico dos átomos dos elementos da Tabela Periódica. Podemos notar também que essa propriedade segue um padrão de variação relacionado com o do raio atômico, pois depende da distância que os elétrons estão do núcleo, ou seja, quanto maior o raio atômico, menor a energia de ionização e vice-versa.

Isso quer dizer que os valores das energias de ionização dos elementos crescem no sentido oposto ao crescimento do raio atômico, ou seja, aumenta de baixo para cima e da esquerda para a direita. Os valores das energias de ionização são medidos experimentalmente e podemos comparar esses valores para confirmarmos esse padrão de variação mencionado:

Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Representações dos valores da primeira energia de ionização de alguns átomos

* Considerando os elementos em uma mesma família: A primeira energia de ionização aumenta de baixo para cima. Isso acontece porque, conforme vai descendo, os níveis de energia e o raio atômico vão aumentando e os elétrons vão ficando mais distantes do núcleo, por isso fica mais fácil retirá-los. Por exemplo, o H (hidrogênio) possui somente uma camada eletrônica, então seu elétron está bem próximo ao núcleo. Já o Cs (césio) possui seis camadas eletrônicas, estando seus elétrons bem distantes do núcleo. É por isso que a energia de ionização do H é bem maior (1312) que a do Cs (376).

Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Átomos de césio e hidrogênio

* Considerando os elementos em um mesmo período: A primeira energia de ionização aumenta da esquerda para a direita. Isso ocorre porque, conforme vai caminhando para a direita, a quantidade de níveis permanece a mesma, mas a quantidade de elétrons vai aumentando, ou seja, a atração pelo núcleo aumenta e seu raio diminui. Com isso, a energia necessária para vencer essa força de atração precisará ser maior. Por exemplo, o Na (sódio) e o Ar (argônio) pertencem ao terceiro período, o que significa que ambos possuem três camadas eletrônicas, mas o Na possui somente um elétron na sua camada mais externa, enquanto o Ar possui oito elétrons nessa camada. Por isso, a primeira energia de ionização do Ar será bem maior (1521) que a do Na (496).

Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Átomos de sódio e argônio

Isso significa que os maiores valores para a energia de ionização são dos elementos situados próximos ao Hélio, ou seja, na parte superior à direita da Tabela Periódica. Por outro lado, os menores valores são dos elementos situados próximos ao césio, na parte inferior à esquerda da Tabela Periódica.

Qual é a Alternativa na qual o átomo citado tem o maior potencial de ionização

Relação entre a energia de ionização e as famílias e períodos na Tabela Periódica

Isso explica algumas propriedades dos elementos, como o fato de os elementos próximos ao Césio serem metais e os elementos próximos ao hélio serem ametais. Conforme o texto Ligação Metálica mostra, os metais são formados por aglomerados de átomos neutros e cátions mergulhados em uma “nuvem” ou “mar” de elétrons deslocalizados. Isso significa que eles devem ter maior facilidade de perder elétrons e, por isso, somente os elementos com baixa energia de ionização podem formar sólidos metálicos. Por outro lado, os elementos no canto superior à direita não possuem essa facilidade de perder elétrons, porque possuem altas energias de ionização e, por essa razão, são ametais.

Aproveite para conferir nossas videoaulas sobre o assunto:

Por Jennifer Rocha Vargas Fogaça