What changes to the image produced on the screen would be observed if the accelerating voltage was decreased?

...but your activity and behavior on this site made us think that you are a bot.

Note: A number of things could be going on here.

  1. If you are attempting to access this site using an anonymous Private/Proxy network, please disable that and try accessing site again.
  2. Due to previously detected malicious behavior which originated from the network you're using, please request unblock to site.

1. Postek MT, Vladár AE. Does Your SEM Really Tell the Truth? How would you know? Part 1. SCANNING. 2013;35:355–361. [PubMed] [Google Scholar]

2. Postek MT, Vladár AE, Kavuri PP. Does Your SEM Really Tell the Truth? How would you know? Part 2. Specimen Contamination. SCANNING. 2014;36:347–355. [PubMed] [Google Scholar]

3. Postek MT, Vladár AE, Cizmar P. Nanomanufacturing Concerns about Measurements made in the SEM Part III: Vibration and Drift. SPIE 9173. 2014;917306:1–10. [Google Scholar]

4. Postek MT, Vladár A. Modeling for Accurate Dimensional Scanning Electron Microscope Metrology: Then and Now. SCANNING. 2011;33:111–125. [PubMed] [Google Scholar]

5. Postek MT, Vladár AE, Lowney J, Larrabee RD, Keery WJ. Two- Dimensional Simulation and Modeling in Scanning Electron Microscope Imaging and Metrology Research. SCANNING. 2002;24:179–185. [PubMed] [Google Scholar]

6. Cazaux. Some Considerations on the Electric Field Induced in Insulators by Electron Beam Bombardment. J Appl Phys. 1986;59:1418–1430. [Google Scholar]

7. Joy DC. Control of Charging in Low Voltage SEM. Scanning. 1989;11:1–4. [Google Scholar]

8. Joy DC, Joy C. Dynamic Charging in the Low Voltage SEM. JMSA. 1995;1(3):109–112. [Google Scholar]

9. Joy DC, Joy C. Low Voltage Scanning Electron Microscopy. Micron. 1996;27:247–263. [Google Scholar]

10. Rose A, Iams H. Television pickup tubes using low-velocity electron-beam scanning. Proc I R E. 1939:547–555. [Google Scholar]

11. Zworykin VK, Morton G, Malter L. The secondary emission multiplier – a new electronic device. Proc Inst Radio Eng. 1936;24(3):351–375. [Google Scholar]

12. Zworkyin VA, Morton G. Television: The electronics of image transmission. Vol. 646. John Wiley and Sons; New York: 1945. [Google Scholar]

13. Zworykin VA, Hillier J, Snyder R. A scanning electron microscope. ASTM Bulletin. 1942;117:15–33. [Google Scholar]

14. McMullan D. Dissertation Univ of Cambridge. 1952. Investigations relating to the design of electron microscopes; p. 202. [Google Scholar]

15. Wells OC. Dissertation Univ of Cambridge. 1957. The construction of a scanning electron microscope and its application to the study of fbres; p. 153. [Google Scholar]

16. Lau KM, Drouin D, Lavallée E, Beauvais J. The Impact of Charging on Low-Energy Electron Beam Lithography. Microscopy and Microanalysis. 2004;10:804–809. [PubMed] [Google Scholar]

17. Anger K, Lischke B, Sturm M. Material surfaces for electron-optical equipment. SCANNING. 1983;5:39–44. [Google Scholar]

18. Reimer L, Golla U, Böngler R, Kassens M, Schindler B, Senkel R. Charging of bulk specimens, insulating layers and free-supporting films in scanning electron microscopy. Optik. 1992;92(1):14–22. [Google Scholar]

19. Clarke DR, Stuart PR. An anomalous contrast effect in the scanning electron microscope. J Phys E: Sci Instrum. 1970;3:705–707. [Google Scholar]

20. Alvarez A, Bonetto R, Guerin D, Peez C. Images of the inner parts of scanning electron microscopes. Electron Optics Reporter (Norelco) 1984;31:1EM 39–43. [Google Scholar]

21. Eckert R. Inspecting the SEM Chamber with a charged polystyrene mirror. SCANNING. 1992;14:73–75. [Google Scholar]

22. Shaffner TJ, Hearle JWS. Scanning Electron Microscopy/1976. Part 1. IITRI; Chicago, IL: 1976. Recent advances in understanding specimen charging; pp. 61–70. 60616. [Google Scholar]

23. Van Veld RD, Shaffner TJ. Scanning Electron Microscopy/1971. 1971 Vol. 60616. IITRI; Chicago, Il: Charging effects in scanning electron microscopy; pp. 19–24. [Google Scholar]

24. Shaffner TJ, van Veld RD. Charging effects in the scanning electron microscope. J Phys E Scientific Instruments. 1971;4(9):633–637. [Google Scholar]

25. Postek MT. SEM/1984/III. SEM, Inc; 1984. Low Accelerating Voltage Inspection and Linewidth Measurement in the Scanning Electron Microscope; pp. 1065–1074. [Google Scholar]

26. Davidson M, Sullivan N. An investigation of the effects of charging in SEM based CD metrology. Proc SPIE. 1997;3050:226–252. [Google Scholar]

27. Postek MT, Joy DC. Submicrometer Microelectronics Dimensional Metrology: Scanning Electron Microscopy. NBS Journal of Research. 1987;92(3):205–228. [Google Scholar]

28. Postek MT. Critical Issues in Scanning Electron Microscope Metrology. NIST J Res. 1994;99(5):641–671. [Google Scholar]

29. Blake DF. Low voltage scanning electron microscopy. Test and Measurement World. 1986;6:62–75. [Google Scholar]

30. Mullerova I, Lenc M. Some approaches to low-voltage scanning electron microscopy. Ultramicroscopy. 1992;41(4):399–410. [Google Scholar]

31. Thornley RFM. Recent developments in scanning electron microscopy. Proc European Regional Conf on Elect Microscopy Delft, Vol 1 (Nederland Verein Electronen) 1960:173–176. [Google Scholar]

32. Postek MT, Howard KS, Johnson AJ, McMichael K. Scanning Electron Microscopy - A Student Handbook. Ladd Research Industries. 1980:305. [Google Scholar]

33. Bastin GF, Heijigers H. Quantitative electron probe microanalysis of non-conducting specimens: science or art? Microscopy & Microanalysis. 2004;10:733–738. [PubMed] [Google Scholar]

34. Crawford CK. Charge neutralization using very low energy ions. Vol. 60666. SEM/1979/II SEM Inc., AMF; O'Hare, Il: 1979. pp. 31–46. [Google Scholar]

35. Crawford CK. Ion charge neutralization effects in scanning electron microscopes. Vol. 60666. SEM/1980/IV SEM Inc., AMF; O'Hare, IL: 1980. pp. 11–25. [PubMed] [Google Scholar]

36. Welter LM, McKee AN. Observations on uncoated, non-conducting or thermally sensitive specimens using a fast scanning field emission source SEM. Vol. 60616. SEM1972 IITRI; Chicago, Ill: 1972. pp. 161–168. [Google Scholar]

37. Wells OC. Low-loss Image for Scanning Electron Microscope. Appl Phys Lett. 1971;19(7):232–235. [Google Scholar]

38. Wells OC. Low-loss Electron Images of Uncoated Photoresist in the Scanning Electron Microscope. Appl Phys Lett. 1986;49(13):764–766. [Google Scholar]

39. Wells OC. Low-loss Electron Images of Uncoated Non-Conducting Samples in the Scanning Electron Microscope. In: Geiss RH, editor. Microbeam Analysis/1987. San Francisco Press; San Francisco CA: 1987. pp. 76–78. [Google Scholar]

40. Wells OC, Rishton SA. Studies of Poorly Conducting Samples by the Low-Loss Electron Method in the Scanning Electron Microscope. In: Bailey GW, Garratt-Reed AJ, editors. Proc 52nd Annual Meeting MSA. 1994. pp. 1022–1023. [Google Scholar]

41. Postek MT, Vladár AE, Wells OC, Lowney JL. Application of the low- loss scanning electron microscope SEM image to integrated circuit technology. Part 1. Applications to accurate dimension measurements. Scanning. 2001;23(5):298–304. [PubMed] [Google Scholar]

42. Sikorski J, Moss JS, Newman PH, Buckley T. A new preparation technique for examination of polymers in the scanning electron microscope. J Phys E. 1968;2(1):29–31. [PubMed] [Google Scholar]

43. Burnett B. An electro-conductive organic coating for scanning electron microscopy. SPIE. 2014;9236:92360L –1–9236 92360L-9. [Google Scholar]

44. Danilatos G. Foundations of environmental scanning electron microscopy. Adv Electron Electron Phys. 1988;71:109–250. [Google Scholar]

45. Danilatos G. Introduction to the ESEM instrument. Microscopy Res Tech. 1993;25:354–361. [PubMed] [Google Scholar]

46. Donald A. The use of environmental scanning electron microscopy for imaging of wet and insulating materials. Nature Materials. 2003;2:511–516. [PubMed] [Google Scholar]

47. Thiel B, Toth M. Secondary electron contrast in low-vacuum environmental scanning electron microscopy of dielectrics. J Appl Phys. 2005;97:051101-1–051101-18. [Google Scholar]

48. Postek MT, Vladár AE. New application of variable pressure/environmental microscopy to semiconductor inspection and metrology. SCANNING. 2004;26:11–17. [Google Scholar]

49. Joy DC. The future of e-beam metrology: Obstacles and opportunities. Proc SPIE. 2002;4689:1–10. [Google Scholar]

50. Postek MT, Vladár AE, Bennett M. Photomask dimensional metrology in the scanning electron microscope, Part 1: has anything really changed? JM3. 2004;3(2):212–223. [Google Scholar]

51. Postek MT, Vladár AE. Critical dimension metrology in the scanning electron microscope. In: Dekker A Diebold., editor. in Handbook of Silicon Semiconductor Metrology. Chap 14. New York: 2000. pp. 295–333. [Google Scholar]

52. Feuerbaum HP. Electron beam testing: methods and applications. Scanning. 1983;5:14–24. [Google Scholar]

53. Leamy H. Charge collection scanning electron microscopy. J App Phys. 53(R51-R80)(1982) [Google Scholar]

54. Finnie P, Kaminska K, Homm Y, Austing D, Lefebvre J. Charge contrast imaging of suspended nanotubes by scanning electron microscopy. Nanotechnology. 2008;19:335202. 6pp. [PubMed] [Google Scholar]

55. Zhao M, Ming B, Kim JW, Gibbon L, Gu X, Nguyen T, Park C, Lillehei P, Villarrubia J, Vladár AE, Liddle JA. New insights into subsurface imaging of carbon nanotubes in polymer composites via scanning electron microscopy. Nanotechnology. 2015;26:085703. 2pp. [PubMed] [Google Scholar]