What does stress mean in earthquakes?

  1. Reasenberg, P. A. & Simpson, R. W. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255, 1687–1690, doi:10.1126/science.255.5052.1687 (1992).

    ADS  CAS  Article  PubMed  Google Scholar 

  2. Stein, R. S. The role of stress transfer in earthquake occurrence. Nature 402, 605–609, doi:10.1038/45144 (1999).

    ADS  CAS  Article  Google Scholar 

  3. Seeber, L. & Armbruster, J. G. Earthquakes as beacons of stress change. Nature 407, 69–72, doi:10.1038/35024055 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  4. Hardebeck, J. L. Stress triggering and earthquake probability estimates. J. Geophys. Res. 109, B04310, doi:10.1029/2003JB002437 (2004).

    ADS  Google Scholar 

  5. Lin, W. et al. Current stress state and principal stress rotations in the vicinity of the Chelungpu Fault induced by the 1999 Chi-Chi, Taiwan, earthquake. Geophys. Res. Lett. 34, L16307, doi:10.1029/2007GL030515 (2007).

    ADS  Google Scholar 

  6. Hasegawa, A., Yoshida, K. & Okada, T. Nearly complete stress drop in the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 703–707, doi:10.5047/eps.2011.06.007 (2011).

  7. Hasegawa, A. et al. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 355–356, 231–243, doi:10.1016/j.epsl.2012.08.042 (2012).

    Article  Google Scholar 

  8. Yoshida, K. et al. Stress before and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophys. Res. Lett. 39, L03302, doi:10.1029/2011GL049729 (2012).

    ADS  Google Scholar 

  9. Lin, W. et al. Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake. Science 339, 687–690, doi:10.1126/science.1229379 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  10. Sakaguchi, K., Huang, X., Noguchi, Y. & Sugawara, K. Application of Conical-ended Borehole technique to discontinuous rock and consideration. J. MMIJ 111, 283–288 (1995).

    Article  Google Scholar 

  11. Sakaguchi, K., Takeda, H. & Matsuki, K. In-Situ rock stress measurement using improved Downward Compact Conical-Ended Borehole Overcoring technique. J. MMIJ 126, 418–424 (2010).

    Article  Google Scholar 

  12. Sakaguchi, K., Yoshida, H., Minami, M., Suzuki, Y. & Matsuki, K. Development of Downward Compact Conical-ended Borehole Overcoring technique for rock stress measurement at great depth, paper presented at the 10th Congress of ISRM, Sandton, South Africa 2, 1007–1010 (2003).

  13. Sakaguchi, K. et al. Development of Downward Compact Conical-ended Borehole Overcoring technique for in situ rock stress measurement in deep borehole. J. MMIJ 122, 338–344 (2006).

    Article  Google Scholar 

  14. Sugawara, K. & Obara, Y. Draft ISRM suggested method for in situ stress measurement using the Compact Conical-ended Borehole Overcoring (CCBO) technique. Int. J. Rock Mech. Min. Sci. 36, 307–322 (1999).

    Article  Google Scholar 

  15. Japan Nuclear Cycle Development Institute, Final Report of Kamaishi In-situ Experiment, JNC TN7410 99–001 (1999).

  16. Yagi, Y. & Fukuhata, Y. Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett. 38, L19307, doi:10.1029/2011GL048701 (2011).

    ADS  Article  Google Scholar 

  17. Suzuki, W., Aoi, S., Sekiguchi, H. & Kunigi, T. Rupture process of the2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophys. Res. Lett. 38, L00G16, doi:10.1029/2011GL049136 (2011).

    Google Scholar 

  18. Matsuo, K. & Heki, K. Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry. Geophys. Res. Lett. 38, L00G12, doi:10.1029/2011GL049018 (2011).

    Article  Google Scholar 

  19. Pollitz, F-F., Burgmann, R. & Banerjee, P. Geodetic slip model of the 2011 M9.0 Tohoku earthquake, Geophys. Res. Lett. 38, L00G08, doi:1029/2011GL048632 (2011).

  20. Toda, S., Lin, J. & Stein, R. Using the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth Planets Space 63, 725–730, doi:10.5047/eps.2011.05.010 (2011).

  21. Hiratsuka, S. & Sato, T. Alteration of stress field brought about by the occurrence of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0). Earth Planets Space 63, 681–685, doi:10.5047eps.2011.05.013 (2011).

  22. Sato, T., Hiratsuka, S. & Mori, J. Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake. Earth Planets Space 64, 1239–1243, doi:10.5047/eps.2012.04.003 (2012).

    ADS  Article  Google Scholar 

  23. Geospatial Information Authority of Japan Crustal Deformations of Entire Japan, Report of The Coordinating Committee for Earthquake Prediction, Japan 87, 1–4 (2011).

  24. Yoshida, H. et al. Overview of the stability and barrier functions of the granite geosphere at the Kamaishi mine: relevance to radioactive waste disposal in Japan. Eng. Geol. 56, 151–162 (2000).

    Article  Google Scholar 

  25. Sakaguchi, K., Takehara, T., Obara, Y., Nakayama, T. & Sugawara, K. Rock stress measurement by means of the Compact Overcoring method. J. MMIJ 110, 331–336 (1994).

    Article  Google Scholar 

  26. Japanese Geotechnical Society Method for initial stress measurement by compact conical-ended borehole overcoring technique, JGS3551–1009 (2009).

  27. Ogasawara, H., Kato, H., Hofmann, G. & de Bruin, P. Trial of the BX conical-ended borehole overcoring stress measurement technique. J. SAIMM 102(8), 749–754 (2012).

    Google Scholar 

  28. Ogasawara, H. et al. In-situ stress measurements to constrain stress and strength near seismic faults in deep level South African gold mines, paper presented at 6th Int. Symp. on In-Situ Rock Stress, Sendai, Japan 1, 614–623 (2013).

  29. Stas, L., Soucek, K., Knejzik, L., Waclawik, P. & Palla, L. Measurement of stress changes using a compact conical-ended borehole monitoring. Geotech. Test. J. 34(6), 685–693 (2011).

    Google Scholar 

  30. Mohamad Ismail, M. A., Azit. R., Mahmood, N. & Narita, N. Evaluation of rock overstressing in the excavation of Pahang-Selangor raw water transfer tunnel project, paper presented at 8th Asian Rock Mechanics Symposium, Sapporo, Japan, GD-4 (2014).

  31. Yoshida, K., Hasegawa, A. & Okada, T. Spatial variation of stress orientations in NE Japan revealed by dense seismic observations. Tectonophysics 647–648, 63–72, doi:10.1016/j.tecto.2015.02.013 (2015).

    Article  Google Scholar 

  32. Asano, Y. et al. Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63, 669–673, doi:10.5047/eps.2011.06.016 (2011).

    ADS  Article  Google Scholar 

  33. Ye, L., Lay, T. & Kanamori, H. The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture. J. Geophys. Res. 117, B02305, doi:10.1029/2011JB008847 (2012).

    ADS  Google Scholar 

  34. Ariyoshi, K. et al. A trial estimation of frictional properties, focusing on aperiodicity off Kamaishi just after the 2011 Tohoku earthquake. Geophys. Res. Lett. 41, 8325–8334, doi:10.1002/2014GL061872 (2014).

    ADS  Article  Google Scholar 

  35. Iinuma, T. et al. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake. Nature Communications 7, 13506, doi:10.1038/ncomms13506 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  36. Bletery, Q. et al. A detailed source model for the M w 9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records. J. Geophys. Res. 119, 7636–7653, doi:10.1002/2014JB011261 (2014).

    ADS  Article  Google Scholar 

  37. Ishibe, T., Ogata, Y., Tsuruoka, H. & Satake, K. Testing the Coulomb stress triggering hypothesis for three recent megathrust earthquakes. Geosci. Lett. 4, 5, doi:10.1186/s40562-017-0070-y (2017).

    ADS  Article  Google Scholar 

  38. Uchida, N., Shimamura, K., Matsuzawa, T. & Okada, T. Postseismic response of repeating earthquakes around the 2011 Tohoku-oki earthquake: Moment increase due to the fast loading rate. J. Geophy. Res. 120, 259–274, doi:10.1002/2013JB010933 (2013).

    Article  Google Scholar 


Page 2

Maps of the measurement location. (a) The positional relationship between the Kamaishi mine and the epicentre of the Tohoku-oki earthquake (yellow star with a red outline). The epicentre of repeaters off Kamaishi is marked by a red star and the location of the Kamaishi mine is indicated by a black star (modified from ref. 34). The total slip distribution of slip greater than 5 m for the 2011 Tohoku-oki earthquake is also plotted, from Yagi and Fukuhata16 and the epicentres of earthquakes (M > 5) in the Sanriku-oki low-seismicity region (SLSR), from Ye et al.33. (b) Topographical map of the area around the Kamaishi mine, created by the first author based on a topographic map. (Geospatial Information Authority of Japan; http://mapps.gsi.go.jp/maplibSearch.do#1) (c) Plan view of the drift at the 550 mL site at the Kamaishi mine. The measurement station used in this study and those in other studies with the Compact Conical-ended Borehole Overcoring (CCBO) technique are indicated by stars. In this Fig., K-1 denotes the measurement station used by Sakaguchi et al.10, K-2 the station used by JNC (Japan Nuclear Cycle Development Institute, current Japan Atomic Energy Agency: JAEA)15 and K-3 and K-4 denote those used by Sugawara et al.14. K-5 marks the measurement station used by Sakaguchi et al.11 with the Downward Compact Conical-ended Borehole Overcoring (DCCBO) technique12, 13, which is located in the vicinity of the measurement station in this study. The DCCBO technique is an improved version of the CCBO technique that can be applied to a vertical borehole from the surface. (This figure was generated using Adobe Illustrator software, version number Illustrator CS5 15.1.0) (d) Plan view of the measurement station. The measurement station is located where two galleries (width ~5.5 m, height ~7 m) are adjacent. in situ stress measurements were performed in four boreholes (SKO-1, SKO-2, SKO-3 and SKO-4), which are denoted by thick solid lines and a red broken line. The star in this figure indicates the K-5 measurement borehole used by Sakaguchi et al.11 with the DCCBO technique using a downward borehole from the gallery floor.