What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Planetary Physics

Kepler's three laws describe how planetary bodies orbit the Sun. They describe how (1) planets move in elliptical orbits with the Sun as a focus, (2) a planet covers the same area of space in the same amount of time no matter where it is in its orbit, and (3) a planet’s orbital period is proportional to the size of its orbit (its semi-major axis).

Explore the process that Johannes Kepler undertook when he formulated his three laws of planetary motion.

Transcript

The planets orbit the Sun in a counterclockwise direction as viewed from above the Sun's north pole, and the planets' orbits all are aligned to what astronomers call the ecliptic plane.

The story of our greater understanding of planetary motion could not be told if it were not for the work of a German mathematician named Johannes Kepler. Kepler lived in Graz, Austria during the tumultuous early 17th century. Due to religious and political difficulties common during that era, Kepler was banished from Graz on August 2nd, 1600.

Fortunately, an opportunity to work as an assistant for the famous astronomer Tycho Brahe presented itself and the young Kepler moved his family from Graz 300 miles across the Danube River to Brahe's home in Prague. Tycho Brahe is credited with the most accurate astronomical observations of his time and was impressed with the studies of Kepler during an earlier meeting. However, Brahe mistrusted Kepler, fearing that his bright young intern might eclipse him as the premier astronomer of his day. He, therefore, led Kepler to see only part of his voluminous planetary data.

He set Kepler, the task of understanding the orbit of the planet Mars, the movement of which fit problematically into the universe as described by Aristotle and Ptolemy. It is believed that part of the motivation for giving the Mars problem to Kepler was Brahe's hope that its difficulty would occupy Kepler while Brahe worked to perfect his own theory of the solar system, which was based on a geocentric model, where the earth is the center of the solar system. Based on this model, the planets Mercury, Venus, Mars, Jupiter, and Saturn all orbit the Sun, which in turn orbits the earth. As it turned out, Kepler, unlike Brahe, believed firmly in the Copernican model of the solar system known as heliocentric, which correctly placed the Sun at its center. But the reason Mars' orbit was problematic was because the Copernican system incorrectly assumed the orbits of the planets to be circular.

After much struggling, Kepler was forced to an eventual realization that the orbits of the planets are not circles, but were instead the elongated or flattened circles that geometers call ellipses, and the particular difficulties Brahe hand with the movement of Mars were due to the fact that its orbit was the most elliptical of the planets for which Brahe had extensive data. Thus, in a twist of irony, Brahe unwittingly gave Kepler the very part of his data that would enable Kepler to formulate the correct theory of the solar system, banishing Brahe's own theory.

Since the orbits of the planets are ellipses, let us review three basic properties of ellipses. The first property of an ellipse: an ellipse is defined by two points, each called a focus, and together called foci. The sum of the distances to the foci from any point on the ellipse is always a constant. The second property of an ellipse: the amount of flattening of the ellipse is called the eccentricity. The flatter the ellipse, the more eccentric it is. Each ellipse has an eccentricity with a value between zero, a circle, and one, essentially a flat line, technically called a parabola.

The third property of an ellipse: the longest axis of the ellipse is called the major axis, while the shortest axis is called the minor axis. Half of the major axis is termed a semi-major axis. Knowing then that the orbits of the planets are elliptical, johannes Kepler formulated three laws of planetary motion, which accurately described the motion of comets as well.

Kepler's First Law: each planet's orbit about the Sun is an ellipse. The Sun's center is always located at one focus of the orbital ellipse. The Sun is at one focus. The planet follows the ellipse in its orbit, meaning that the planet to Sun distance is constantly changing as the planet goes around its orbit.

Kepler's Second Law: the imaginary line joining a planet and the Sun sweeps equal areas of space during equal time intervals as the planet orbits. Basically, that planets do not move with constant speed along their orbits. Rather, their speed varies so that the line joining the centers of the Sun and the planet sweeps out equal parts of an area in equal times. The point of nearest approach of the planet to the Sun is termed perihelion. The point of greatest separation is aphelion, hence by Kepler's Second Law, a planet is moving fastest when it is at perihelion and slowest at aphelion.

Kepler's Third Law: the squares of the orbital periods of the planets are directly proportional to the cubes of the semi-major axes of their orbits. Kepler's Third Law implies that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit. Thus we find that Mercury, the innermost planet, takes only 88 days to orbit the Sun. The earth takes 365 days, while Saturn requires 10,759 days to do the same. Though Kepler hadn't known about gravitation when he came up with his three laws, they were instrumental in Isaac Newton deriving his theory of universal gravitation, which explains the unknown force behind Kepler's Third Law. Kepler and his theories were crucial in the better understanding of our solar system dynamics and as a springboard to newer theories that more accurately approximate our planetary orbits.

A year on Earth is approximately 365 days. Why is that considered a year? Well, 365 days is about how long it takes for Earth to orbit all the way around the Sun one time.

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

A year is measured by how long it takes a planet to orbit around its star. Earth orbits around the Sun in approximately 365 days. Credit: NASA/Terry Virts

It’s not exactly this simple though. An Earth year is actually about 365 days, plus approximately 6 hours. Read more about that here.

All of the other planets in our solar system also orbit the Sun. So, how long is a year on those planets? Well, it depends on where they are orbiting!

Planets that orbit closer to the Sun than Earth have shorter years than Earth. Planets that orbit farther from the Sun than Earth have longer years than Earth.

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

A planet orbiting close to its star has a shorter year than a planet orbiting farther from its star. Credit: NASA/JPL-Caltech

This happens for two main reasons.

  1. If a planet is close to the Sun, the distance it orbits around the Sun is fairly short. This distance is called an orbital path.

  2. The closer a planet travels to the Sun, the more the Sun’s gravity can pull on the planet. The stronger the pull of the Sun’s gravity, the faster the planet orbits.

Check out how long a year is on each planet below!


What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 88 Earth DaysDistance from Sun: ~35 million miles

(58 million km)

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 225 Earth DaysDistance from Sun: ~67 million miles

(108 million km)

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 365 Earth DaysDistance from Sun: ~93 million miles

(150 million km)

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 687 Earth DaysDistance from Sun: ~142 million miles

(228 million km)

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 4,333 Earth DaysDistance from Sun: ~484 million miles

(778 million km)

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 10,759 Earth DaysDistance from Sun: ~887 million miles

(1.43 billion km)

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 30,687 Earth DaysDistance from Sun: ~1.78 billion miles

(2.87 billion km)

What is the relationship between the distance of a planet from the Sun and the time it takes that planet to orbit the Sun?

Year: 60,190 Earth DaysDistance from Sun: ~2.80 billion miles

(4.5 billion km)

Why does NASA care about years on other planets?

NASA needs to know how other planets orbit the Sun because it helps us travel to those planets! For example, if we want a spacecraft to safely travel to another planet, we have to make sure we know where that planet is in its orbit. And we also have to make sure we don’t run into any other orbiting objects — like planets or asteroids — along the way.

Scientists who study Mars also need to keep a Martian calendar to schedule what rovers and landers will be doing and when.


Mars and Earth are always moving. So, if we want to land a robotic explorer on Mars, we have to understand how Earth and Mars orbit the Sun. Watch this video to learn more about the Martian year. Credit: NASA/JPL-Caltech

*Length of year on other planets calculated from data on the NASA Solar System Dynamics website.

article last updated July 13, 2020