What technique can be used to reduce the risk of lung injury in a patient with ARDS who is on mechanical ventilation?

  1. Richard C (1996) Tissue hypoxia. How to detect, how to correct, how to prevent? Intensive Care Med 22:1250–1257

    CAS  Article  PubMed  Google Scholar 

  2. MacIntyre NR (2013) Supporting oxygenation in acute respiratory failure. Respir Care 58:142–150

    Article  PubMed  Google Scholar 

  3. Abdelsalam M, Cheifetz IM (2010) Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care 55:1483–1490

    PubMed  Google Scholar 

  4. Vincent JL, De Backer D (2004) Oxygen transport—the oxygen delivery controversy. Intensive Care Med 30:1990–1996

    Article  PubMed  Google Scholar 

  5. Gilbert-Kawai ET, Mitchell K, Martin D, Carlisle J, Grocott MP (2014) Permissive hypoxaemia versus normoxaemia for mechanically ventilated critically ill patients. Cochrane Database Syst Rev 5:CD009931

    PubMed  Google Scholar 

  6. Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, Localio AR, Demissie E, Hopkins RO, Angus DC (2012) The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 185:1307–1315

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martin DS, Grocott MP (2013) Oxygen therapy in critical illness: precise control of arterial oxygenation and permissive hypoxemia. Crit Care Med 41:423–432

    CAS  Article  PubMed  Google Scholar 

  8. Network TA (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  9. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166

    CAS  Article  PubMed  Google Scholar 

  10. Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L (2016) The “baby lung” became an adult. Intensive Care Med. doi:10.1007/s00134-015-4200-8

  11. Terragni PP, Filippini C, Slutsky AS, Birocco A, Tenaglia T, Grasso S, Stripoli T, Pasero D, Urbino R, Fanelli V, Faggiano C, Mascia L, Ranieri VM (2013) Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome. Anesthesiology 119:880–889

    Article  PubMed  Google Scholar 

  12. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG (2015) Driving pressure and survival in the acute respiratory distress syndrome. New Engl J Med 372:747–755

    CAS  Article  PubMed  Google Scholar 

  13. Ferrando C, Suárez-Sipmann F, Gutierrez A, Tusman G, Carbonell J, García M, Piqueras L, Compañ D, Flores S, Soro M, Llombart A, Belda FJ (2015) Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance. Crit Care 19:R9

    Article  Google Scholar 

  14. Chacko B, Peter JV, Tharyan P, John G, Jeyaseelan L (2015) Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev 14:CD008807

    Google Scholar 

  15. Rittayamai N, Katsios CM, Beloncle F, Friedrich JO, Mancebo J, Brochard L (2015) Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest 148:340–355

    Article  PubMed  Google Scholar 

  16. Facchin F, Fan E (2015) Airway pressure release ventilation and high-frequency oscillatory ventilation: potential strategies to treat severe hypoxemia and prevent ventilator-induced lung injury. Respir Care 60:1509–1521

    Article  PubMed  Google Scholar 

  17. Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055

    Article  PubMed  Google Scholar 

  18. Tschumperlin DJ, Oswari J, Margulies AS (2000) Deformation-induced injury of alveolar epithelial cells: effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362

    CAS  Article  PubMed  Google Scholar 

  19. Conrad SA, Zhang S, Arnold TC, Scott LK, Carden DL (2005) Protective effects of low respiratory frequency in experimental ventilator-associated lung injury. Crit Care Med 33:835–840

    Article  PubMed  Google Scholar 

  20. Baumgardner JE, Markstaller K, Pfeiffer B, Doebrich M, Otto CM (2002) Effects of respiratory rate, plateau pressure, and positive end-expiratory pressure on PaO2 oscillations after saline lavage. Am J Respir Crit Care Med 166:1556–1562

    Article  PubMed  Google Scholar 

  21. Neumann P, Berglund JE, Mondejar EF, Magnusson A, Hedenstierna G (1998) Effect of different pressure levels on the dynamics of lung collapse and recruitment in oleic-acid-induced lung injury. Am J Respir Crit Care Med 158:1636–1643

    CAS  Article  PubMed  Google Scholar 

  22. Mercat A, Titiriga M, Anguel N, Richard C, Teboul JL (2001) Inverse ratio ventilation (I/E = 2/1) in acute respiratory distress syndrome: a six-hour controlled study. Am J Respir Crit Care Med 155:1637–1642

    Article  Google Scholar 

  23. Boehme S, Bentley AH, Hartmann EK, Chang S, Erdoes G, Prinzing A, Hagmann M, Baumgardner JE, Ullrich R, Markstaller K, David M (2015) Influence of inspiration to expiration ratio on cyclic recruitment and derecruitment of atelectasis in a saline lavage model of acute respiratory distress syndrome. Crit Care Med 43:e65–e74

    Article  PubMed  Google Scholar 

  24. Lee SM, Kim WH, Ahn HJ, Kim JA, Yang MK, Lee CH, Lee JH, Kim YR, Choi JW (2013) The effects of prolonged inspiratory time during one-lung ventilation: a randomized controlled trial. Anaesthesia 68:908–916

    CAS  Article  PubMed  Google Scholar 

  25. Casetti AV, Bartlett RH, Hirschl RB (2002) Increasing inspiratory time exacerbates ventilator-induced lung injury during high-pressure/high-volume mechanical ventilation. Crit Care Med 30:2295–2299

    Article  PubMed  Google Scholar 

  26. American Association for Respiratory Care, Restrepo RD, Walsh BK (2012) Humidification during invasive and noninvasive mechanical ventilation. Respir Care 57:782–788

    Article  Google Scholar 

  27. Prat G, Renault A, Tonnelier JM, Goetghebeur D, Oger E, Boles JM, L’Her E (2003) Influence of the humidification device during acute respiratory distress syndrome. Intensive Care Med 29:2211–2215

    Article  PubMed  Google Scholar 

  28. Prin S, Chergui K, Augarde R, Page B, Jardin F, Vieillard-Baron A (2002) Ability and safety of a heated humidifier to control hypercapnic acidosis in severe ARDS. Intensive Care Med 28:1756–1760

    Article  PubMed  Google Scholar 

  29. Morán I, Bellapart J, Vari A, Mancebo J (2006) Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange. Intensive Care Med 32:524–531

    Article  PubMed  Google Scholar 

  30. Petty TL, Ashbaugh DG (1971) The adult respiratory distress syndrome. Clinical features, factors influencing prognosis and principles of management. Chest 60:233–239

    CAS  Article  PubMed  Google Scholar 

  31. Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33

    Article  PubMed  Google Scholar 

  32. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, LE Hand, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE, Lung Open Ventilation Study Investigators (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645

    CAS  Article  PubMed  Google Scholar 

  33. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655

    CAS  Article  PubMed  Google Scholar 

  34. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336

    Article  PubMed  Google Scholar 

  35. Suzumura EA, Figueiró M, Normilio-Silva K, Laranjeira L, Oliveira C, Buehler AM, Bugano D, Passos Amato MB, Ribeiro Carvalho CR, Berwanger O, Cavalcanti AB (2014) Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Med 40:1227–1240

    Article  PubMed  Google Scholar 

  36. Cinnella G, Grasso S, Raimondo P, D’Antini D, Mirabella L, Dambrosio RM (2015) Physiological effects of the open lung approach in patients with early, mild, diffuse acute respiratory distress syndrome: an electrical impedance tomography study. Anesthesiology 123:1113–1121

    Article  PubMed  Google Scholar 

  37. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:865–873

    CAS  Article  PubMed  Google Scholar 

  38. Kacmarek RM, Villar J (2013) Management of refractory hypoxemia in ARDS. Minerva Anestesiol 79:1173–1179

    CAS  PubMed  Google Scholar 

  39. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A, ACURASYS Study Investigators (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116

    CAS  Article  PubMed  Google Scholar 

  40. Grasso S, Terragni P, Birocco A, Urbino R, Del Sorbo L, Mascia FCL, Pesenti A, Zangrillo A, Gattinoni L, Ranieri VM (2012) ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 38:395–403

    CAS  Article  PubMed  Google Scholar 

  41. de Matos GF, Stanzani F, Passos RH, Fontana MF, Albaladejo R, Caserta RE, Santos DC, Borges JB, Amato MB, Barbas CS (2012) How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Crit Care 16:R4

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Russo QMS, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786

    CAS  Article  PubMed  Google Scholar 

  43. Constantin JM, Grasso S, Chanques G, Aufort S, Futier E, Sebbane M, Jung B, Gallix B, Bazin JE, Rouby JJ, Jaber S (2010) Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med 38:1108–1117

    Article  PubMed  Google Scholar 

  44. Rehberg S, Ertmer C, Westphal M (2009) Mechanical ventilation in patients with ARDS: is the lung’s fortune the right ventricle’s poison? Intensive Care Med 35:1825–1826

    Article  PubMed  Google Scholar 

  45. Mure M, Martling CR, Lindahl SG (1997) Dramatic effect on oxygenation in patients with severe acute lung insufficiency treated in the prone position. Crit Care Med 25:1539–1544

    CAS  Article  PubMed  Google Scholar 

  46. Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, Pesenti A, Guerin C, Mancebo J, Curley MA, Fernandez R, Chan MC, Beuret P, Voggenreiter G, Sud M, Tognoni G, Gattinoni L (2010) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 36:585–599

    Article  PubMed  Google Scholar 

  47. Gattinoni L, Carlesso E, Taccone P, Polli F, Guerin C, Mancebo J (2010) Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol 76:448–454

    CAS  PubMed  Google Scholar 

  48. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L, PROSEVA Study Group (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–2168

    Article  PubMed  Google Scholar 

  49. Albert RK, Keniston A, Baboi L, Ayzac L, Guerin C, Proseva I (2014) Prone position-induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome. Am J Respir Crit Care Med 189:494–496

    Article  PubMed  Google Scholar 

  50. Cornejo RA, Diaz JC, Tobar EA, Bruhn AR, Ramos CA, Gonzalez RA, Repetto CA, Romero CM, Galvez LR, Llanos O, Arellano DH, Neira WR, Diaz GA, Zamorano AJ, Pereira GL (2013) Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 188:440–448

    Article  PubMed  Google Scholar 

  51. Guerin C, Baboi L, Richard JC (2014) Mechanisms of the effects of prone positioning in acute respiratory distress syndrome. Intensive Care Med 40:1634–1642

    CAS  Article  PubMed  Google Scholar 

  52. Mentzelopoulos SD, Roussos C, Zakynthinos SG (2005) Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J 25:534–544

    CAS  Article  PubMed  Google Scholar 

  53. Villar J, Pérez-Méndez L, Blanco J, Añón JM, Blanch L, Belda J, Santos-Bouza A, Fernández RL, Kacmarek RM, Spanish Initiative for Epidemiology, Stratification, and Therapies for ARDS (SIESTA) Network (2013) A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting—a prospective, multicenter validation study. Intensive Care Med 39:583–592

    CAS  Article  PubMed  Google Scholar 

  54. Guérin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, Cadiergue V, Sainty JM, Barbe P, Combourieu E, Debatty D, Rouffineau J, Ezingeard E, Millet O, Guelon D, Rodriguez L, Martin O, Renault A, Sibille JP, Kaidomar M (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 292:2379–2387

    Article  PubMed  Google Scholar 

  55. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, Brazzi L, Latini R (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573

    CAS  Article  PubMed  Google Scholar 

  56. Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodriguez F, Garro P, Ricart P, Vallverdu I, Gich I, Castano J, Saura P, Dominguez G, Bonet A, Albert RK (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239

    Article  PubMed  Google Scholar 

  57. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, Mancebo J, Guerin C, Ayzac L, Blanch L, Fumagalli R, Tognoni G, Gattinoni L (2009) Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 302:1977–1984

    CAS  Article  PubMed  Google Scholar 

  58. Sud S, Friedrich JO, Adhikari NK, Taccone P, Mancebo J, Polli F, Latini R, Pesenti A, Curley MA, Fernandez R, Chan MC, Beuret P, Voggenreiter G, Sud M, Tognoni G, Gattinoni L, Guerin C (2014) Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis. CMAJ 186:E381–E390

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bloomfield R, Noble DW, Sudlow A (2015) Prone position for acute respiratory failure in adults. Cochrane Database Syst Rev 11:CD008095

    PubMed  Google Scholar 

  60. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R, Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign (2013) International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228

    CAS  Article  PubMed  Google Scholar 

  61. Liesenfeld O, Lehman L, Hunfeld K-P, Kost K (2014) Molecular diagnosis of sepsis: new aspects and recent developments. Eur J Microbiol Immun 4:1–25

    CAS  Article  Google Scholar 

  62. Douglas IS (2016) New diagnostic methods for pneumonia in the ICU. Curr Opin Infect Dis 29:197–204

  63. Flanagan PG, Findlay GP, Magee JT, Ionescu A, Barnes RA, Smithies M (2000) The diagnosis of ventilator-associated pneumonia using non-bronchoscopic, non-directed lung lavages. Intensive Care Med 26:20–30

    CAS  Article  PubMed  Google Scholar 

  64. Vélez Lázaro, Correa Luz Teresita, Maya Maria Angélica, Mejía Patricia, Ortega Jorge, Bedoya Victoria, Ortega Héctor (2007) Diagnostic accuracy of bronchoalveolar lavage samples in immunosuppressed patients with suspected pneumonia: analysis of a protocol. Respir Med 101:2160–2167

    Article  PubMed  Google Scholar 

  65. Jain S, Benoit SR, Skarbinski J, Bramley AM, Finelli L, Pandemic Influenza A (H1N1) Virus Hospitalizations Investigation Team (2012) Influenza-associated pneumonia among hospitalized patients with 2009 pandemic influenza A (H1N1) virus–United States, 2009. Clin Infect Dis 54:1221–1229

    CAS  Article  PubMed  Google Scholar 

  66. Guérin C, Thompson T, Brower R (2015) The ten diseases that look like ARDS. Intensive Care Med 41:1099–1102

    Article  PubMed  Google Scholar 

  67. Gibelin A, Parrot A, Maitre B, Brun-Buisson C, Mekontso Dessap A, Fartoukh M, de Prost N (2016) Acute respiratory distress syndrome mimickers lacking common risk factors of the Berlin definition. Intensive Care Med 42:164–172

    CAS  Article  PubMed  Google Scholar 

  68. Poletti V, Ravaglia C, Gurioli C et al (2016) Invasive diagnostic techniques in idiopathic interstitial pneumonias. Respirology 21:44–50

    Article  PubMed  Google Scholar 

  69. Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, Niederman MS, Rello J, EU-VAP Study Investigators (2013) Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 39:672–681

    Article  PubMed  Google Scholar 

  70. Palakshappa JA, Meyer NJ (2015) Which patients with ARDS benefit from lung biopsy? Chest 148:1073–1082

    Article  PubMed  Google Scholar 

  71. Taccone FS, den Abeele Van et al (2015) Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying condition, and outcome. Crit Care 19:7

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eigl S, Prattes J, Lackner M et al (2015) Multicenter evaluation of a lateral-flow device test diagnosing invasive pulmonary aspergillosis in ICU patients. Crit Care 19:178

    Article  PubMed  PubMed Central  Google Scholar 

  73. Deja M, Spies C (2009) Prevention measures of ventilator-associated pneumonia. Crit Care Med 37:330–332

    Article  PubMed  Google Scholar 

  74. Alhazzani W, Alshahrani M, Jaeschke R, Forel JM, Papazian L, Sevransky J, Meade MO (2013) Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care 17:R43

    Article  PubMed  PubMed Central  Google Scholar 

  75. Forel JM, Roch A, Marin V, Michelet P, Demory D, Blache JL, Perrin G, Gainnier M, Bongrand P, Papazian L (2006) Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med 34:2749–2757

    CAS  Article  PubMed  Google Scholar 

  76. Lonardo NW, Mone MC, Nirula R, Kimball EJ, Ludwig K, Zhou X, Sauer BC, Nechodom K, Teng C, Barton RG (2014) Propofol is associated with favorable outcomes compared with benzodiazepines in ventilated intensive care unit patients. Am J Resp Crit Care Med 189(11):1383–1394

    CAS  Article  PubMed  Google Scholar 

  77. Barr J, Fraser GL, Puntillo K, Ely EW, Gelinas C, Dasta JF, Davidson JE, Devlin JW, Kress JP, Joffe AM, Coursin DB, Herr DL, Tung A, Robinson BRH, Fontaine DK, Ramsay MA, Riker RR, Sessler CN, Pun B, Skrobik Y, Jaeschke R (2013) Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 41:263–306

    Article  PubMed  Google Scholar 

  78. Mehta S, Burry L, Cook D, Fergusson D, Steinberg M, Granton J, Herridge M, Ferguson N, Devlin J, Tanios M, Dodek P, Fowler R, Burns K, Jacka M, Olafson K, Skrobik Y, Hebert P, Sabri E, Meade M, For the SLEAP Investigators and the Canadian Critical Care Trials Group (2012) Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA 308(19):1985–1992

    CAS  Article  PubMed  Google Scholar 

  79. Burry L, Rose L, McCullagh IJ, Fergusson DA, Ferguson ND, Mehta S (2014) Daily sedation interruption versus no daily sedation interruption for critically ill adult patients requiring invasive mechanical ventilation. Cochrane Database Syst Rev 9:CD009176

    Google Scholar 

  80. Afshari A, Brok J, Moller AM, Etterslev J (2010) Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults. Cochrane Database Syst Rev 7:002787

    Google Scholar 

  81. Adhikari NKJ, Dellinger RP, Lundin S, Payen D, Vallet B, Gerlach H, Park KJ, Mehta S, Slutsky AS, Friedrich JO (2014) Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis. Crit Care Med 42:404–412

    CAS  Article  PubMed  Google Scholar 

  82. Torbic H, Szumita PM, Anger KE, Nuccio P, LaGambina S, Weinhouse G (2013) Inhaled epoprostenol vs inhaled nitric oxide for refractory hypoxemia in critically ill patients. J Crit Care 28:844–848

    CAS  Article  PubMed  Google Scholar 

  83. The National Heart Lung and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  Google Scholar 

  84. Kuzolev A, Tishkov E, Bukaev O (2013) Effect of continuous high-volume hemofiltration on patients with acute respiratory distress syndrome. Crit Care 17(Suppl 2):P431

    Article  Google Scholar 

  85. Zhang JC, Chu YF, Zeng J, Ren HS, Meng M, Jiang JJ, Wang CT (2013) Effect of continuous high-volume hemofiltration in patients with severe acute respiratory distress syndrome. Chin Crit Care Med 25(3):145–148

    CAS  Google Scholar 

  86. Krag M, Perner A, Wetterslev J, Wise MP, Hylander Møller M (2014) Stress ulcer prophylaxis versus placebo or no prophylaxis in critically ill patients. A systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med 40:11–22

    CAS  Article  PubMed  Google Scholar 

  87. Bein T, Briegel J, Annane D (2016) Steroids are part of rescue therapy in ARDS patients with refractory hypoxemia: yes. Intensive Care Med. doi:10.1007/s00134-015-4162-x

  88. Richard C, Argaud L, Blet A, Boulain T, Contentin L, Dechartres A, Dejode JM, Donetti L, Fartoukh M, Fletcher D, Kuteifan K, Lasocki S, Liet JM, Lukaszewicz AC, Mal H, Maury E, Osman D, Outin H, Richard JC, Schneider F, Tamion F (2014) Extracorporeal life support for patients with acute respiratory distress syndrome: report of a consensus conference. Ann Intensive Care 24(4):15

    Article  Google Scholar 

  89. Bein T, Bischoff M, Brückner U, Gebhardt K, Henzler D, Hermes C, Lewandowski K, Max M, Nothacker M, Staudinger T, Tryba M, Weber-Carstens S, Wrigge H (2015) S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders: revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist 64(Suppl 1):1–26

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Combes A, Ranieri M (2015) Rescue therapy for refractory ARDS should be offered early: yes. Intensive Care Med 41:923–925

    Article  PubMed  Google Scholar 

  91. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A, LUNG SAFE Investigators, The ESICM Trials Group (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800

    Article  PubMed  Google Scholar 


Page 2

From: The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia

Side effect/complication Incidence Comment
Ventilator-associated lung injury (VALI) Not known Incidence and intensity depend on invasiveness/duration of mechanical ventilation
Ventilation-associated pneumonia (VAP) 14–28 % Problem: incidence depends on VAP definition; incidence increases with duration and invasiveness of mechanical ventilation
Right ventricular dysfunction, acute cor pulmonale Up to 50 % Often associated with severe hypercapnia/acidosis
Pleural effusions Up to 80 % Frequently related to fluid overload, hypo-oncotic states, cardiac dysfunction, and altered pleural pressure
Barotrauma/pneumothorax 6–12 % Depends on the invasiveness (P Plat) of mechanical ventilation
Damage of other organ systems via cross talk Not known exactly Lung, brain, and—renal cross talk via inflammation pathways
Prolonged sedation and immobilization Not known Incidence and intensity depend on sedation strategy, (early) wake up, and spontaneous breathing trials
Fibroproliferative response of the lung parenchyma Up to 50 % in the “lung-protective era” Decrements in lung function (vital capacity, forced expiratory volume) up to 5 years after discharge