When infant motor skills are compared around the world the earliest independent walkers are seen in?

FULL STORY

On average, children take the first steps on their own at the age of 12 months. Many parents perceive this event as a decisive turning point. However, the timing is really of no consequence. Children who start walking early turn out later to be neither more intelligent nor more well-coordinated. This is the conclusion reached by a study supported by the Swiss National Science Foundation (SNSF).

Because parents pay great attention to their offspring, they often compare them with the other children in the sandpit or playground. Many of them worry that their child is lagging behind in terms of mental development if it sits up or starts to walk a bit later than other children. Now, however, in a statistical analysis of the developmental data of 222 children born healthy, researchers headed by Oskar Jenni of the Zurich Children's Hospital and Valentin Rousson of Lausanne University have come to the conclusion that most of these fears are groundless.

Considerable variance

Within the framework of the Zurich longitudinal study, the paediatricians conducted a detailed study of the development of 119 boys and 103 girls. The researchers examined the children seven times during the first two years of their life and subsequently carried out motor and intelligence tests with them every two to three years after they reached school age. The results show that children sit up for the first time at an age of between slightly less than four months and thirteen months (average 6.5 months). They begin to walk at an age of between 8.5 months and 20 months (average 12 months). In other words, there is considerable variance.

The researchers found no correlation between the age at which the children reached these motor milestones and their performance in the intelligence and motor tests between the age of seven and eighteen. In short, by the time they reach school age, children who start walking later than others are just as well-coordinated and intelligent as those who were up on their feet early.

More relaxed

Although the first steps that a child takes on its own represent a decisive turning point for most parents, the precise timing of this event is manifestly of no consequence. "That's why I advise parents to be more relaxed if their child only starts walking at 16 or 18 months," says Jenni. If a child still can't walk unaided after 20 months, then further medical investigations are indicated.

make a difference: sponsored opportunity

Journal Reference:

  1. Oskar G Jenni, Aziz Chaouch, Jon Caflisch, Valentin Rousson. Infant motor milestones: poor predictive value for outcome of healthy children. Acta Paediatrica, 2013; 102 (4): e181 DOI: 10.1111/apa.12129


  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5) (5th ed.). Washington DC: American Psychiatric Association.

    Book  Google Scholar 

  • Arabameri, E., & Sotoodeh, M. S. (2015). Early developmental delay in children with autism: A study from a developing country. Infant Behavior and Development, 39, 118–123. https://doi.org/10.1016/j.infbeh.2015.02.017.

    Article  PubMed  Google Scholar 

  • Asperger, H. (1944). Autistischen Psychopathen im Kindesalter. Archiv fur Psychiatrie und Nervenkrankheiten, 117, 76–136.

    Article  Google Scholar 

  • Berument, S. K., Rutter, M., Lord, C., Pickles, A., & Bailey, A. (1999). Autism screening questionnaire: Diagnostic validity. British Journal of Psychiatry, 175, 444–451.

    Article  Google Scholar 

  • Bhat, A. N., Galloway, J. C., & Landa, R. J. (2012). Relation between early motor delay and later communication delay in infants at risk for autism. Infant Behavior and Development, 35(4), 838–846. https://doi.org/10.1016/j.infbeh.2012.07.019.

    Article  PubMed  Google Scholar 

  • Bishop, S. L., Farmer, C., Bal, V., Robinson, E. B., Willsey, A. J., Werling, D. M., et al. (2017). Identification of developmental and behavioral markers associated with genetic abnormalities in autism spectrum disorder. American Journal of Psychiatry. https://doi.org/10.1176/appi.ajp.2017.16101115.

    Article  PubMed  Google Scholar 

  • Bishop, D. V., & Norbury, C. F. (2002). Exploring the borderlands of autistic disorder and specific language impairment: A study using standardised diagnostic instruments. Journal of Child Psychology and Psychiatry, 43(7), 917–929.

    Article  PubMed  Google Scholar 

  • Bishop, S. L., Thurm, A., Farmer, C., & Lord, C. (2016). Autism spectrum disorder, intellectual disability, and delayed walking. Pediatrics, 137(3), e20152959. https://doi.org/10.1542/peds.2015-2959.

    Article  PubMed  Google Scholar 

  • Bolton, P. F., Golding, J., Emond, A., & Steer, C. D. (2012). Autism spectrum disorder and autistic traits in the Avon Longitudinal Study of Parents and Children: Precursors and early signs. Journal of the American Academy of Child and Adolescent Psychiatry, 51(3), 249–260.e225. https://doi.org/10.1016/j.jaac.2011.12.009.

    Article  PubMed  Google Scholar 

  • Boyle, C. A., Boulet, S., Schieve, L. A., Cohen, R. A., Blumberg, S. J., Yeargin-Allsopp, M., et al. (2011). Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics, 127(6), 1034–1042. https://doi.org/10.1542/peds.2010-2989.

    Article  PubMed  Google Scholar 

  • Buja, A., Volfovsky, N., Krieger, A. M., Lord, C., Lash, A. E., Wigler, M., et al. (2018). Damaging de novo mutations diminish motor skills in children on the autism spectrum. Proceedings of the National Academy of Sciences of the United States of America, 115(8), E1859–e1866. https://doi.org/10.1073/pnas.1715427115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Routledge.

    Google Scholar 

  • Constantino, J. N., & Charman, T. (2016). Diagnosis of autism spectrum disorder: Reconciling the syndrome, its diverse origins, and variation in expression. The Lancet Neurology, 15(3), 279–291. https://doi.org/10.1016/s1474-4422(15)00151-9.

    Article  PubMed  Google Scholar 

  • Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427–433.

    Article  PubMed  Google Scholar 

  • Constantino, J., & Gruber, C. (2005). Social responsive scale (SRS) manual. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60(5), 524–530. https://doi.org/10.1001/archpsyc.60.5.524.

    Article  PubMed  Google Scholar 

  • Constantino, J. N., & Todd, R. D. (2005). Intergenerational transmission of subthreshold autistic traits in the general population. Biological Psychiatry, 57(6), 655–660. https://doi.org/10.1016/j.biopsych.2004.12.014.

    Article  PubMed  Google Scholar 

  • Corsello, C., Hus, V., Pickles, A., Risi, S., Cook, E. H., Jr., Leventhal, B. L., et al. (2007). Between a ROC and a hard place: Decision making and making decisions about using the SCQ. Journal of Child Psychology and Psychiatry, 48(9), 932–940. https://doi.org/10.1111/j.1469-7610.2007.01762.x.

    Article  PubMed  Google Scholar 

  • Dworzynski, K., Ronald, A., Bolton, P., & Happe, F. (2012). How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? Journal of the American Academy of Child and Adolescent Psychiatry, 51(8), 788–797. https://doi.org/10.1016/j.jaac.2012.05.018.

    Article  PubMed  Google Scholar 

  • Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40(10), 1227–1240. https://doi.org/10.1007/s10803-010-0981-3.

    Article  PubMed  Google Scholar 

  • Frazier, T. W., Youngstrom, E. A., Hardan, A. Y., Georgiades, S., Constantino, J. N., & Eng, C. (2015). Quantitative autism symptom patterns recapitulate differential mechanisms of genetic transmission in single and multiple incidence families. Molecular Autism, 6(1), 58. https://doi.org/10.1186/s13229-015-0050-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillberg, C. (2010). The ESSENCE in child psychiatry: Early symptomatic syndromes eliciting neurodevelopmental clinical examinations. Research in Developmental Disabilities, 31(6), 1543–1551. https://doi.org/10.1016/j.ridd.2010.06.002.

    Article  PubMed  Google Scholar 

  • Green, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., et al. (2009). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine and Child Neurology, 51(4), 311–316.

    Article  PubMed  Google Scholar 

  • Halvorsen, M., & Helverschou, S. E. (2017). Måleegenskaper ved den norske versjonen av autism diagnostic interview-revised (ADI-R). PsykTestBarn, 1, 5.

    Google Scholar 

  • Harris, S. R. (2017). Early motor delays as diagnostic clues in autism spectrum disorder. European Journal of Pediatrics, 176(9), 1259–1262. https://doi.org/10.1007/s00431-017-2951-7.

    Article  PubMed  Google Scholar 

  • Hatakenaka, Y., Kotani, H., Yasumitsu-Lovell, K., Suzuki, K., Fernell, E., & Gillberg, C. (2016). Infant motor delay and early symptomatic syndromes eliciting neurodevelopmental clinical examinations in Japan. Pediatric Neurology, 54, 55–63. https://doi.org/10.1016/j.pediatrneurol.2015.09.008.

    Article  PubMed  Google Scholar 

  • Havdahl, K. A., Hus Bal, V., Huerta, M., Pickles, A., Oyen, A. S., Stoltenberg, C., et al. (2016). Multidimensional influences on autism symptom measures: Implications for use in etiological research. Journal of the American Academy of Child and Adolescent Psychiatry, 55(12), 1054–1063.e1053. https://doi.org/10.1016/j.jaac.2016.09.490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilton, C., Wente, L., LaVesser, P., Ito, M., Reed, C., & Herzberg, G. (2007). Relationship between motor skill impairment and severity in children with Asperger syndrome. Research in Autism Spectrum Disorders, 1(4), 339–349.

    Article  Google Scholar 

  • Hilton, C. L., Zhang, Y., Whilte, M. R., Klohr, C. L., & Constantino, J. (2012). Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders. Autism, 16(4), 430–441. https://doi.org/10.1177/1362361311423018.

    Article  PubMed  Google Scholar 

  • Hus, V., & Lord, C. (2013). Effects of child characteristics on the autism diagnostic interview-revised: Implications for use of scores as a measure of ASD severity. Journal of Autism and Developmental Disorders, 43(2), 371–381. https://doi.org/10.1007/s10803-012-1576-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hus, V., Taylor, A., & Lord, C. (2011). Telescoping of caregiver report on the autism diagnostic interview-revised. Journal of Child Psychology and Psychiatry, 52(7), 753–760. https://doi.org/10.1111/j.1469-7610.2011.02398.x.

    Article  PubMed  Google Scholar 

  • Jenni, O. G., Chaouch, A., Caflisch, J., & Rousson, V. (2013). Infant motor milestones: Poor predictive value for outcome of healthy children. Acta Paediatrica, 102(4), e181–184. https://doi.org/10.1111/apa.12129.

    Article  PubMed  Google Scholar 

  • Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.

    Google Scholar 

  • Karasik, L. B., Tamis-Lemonda, C. S., & Adolph, K. E. (2014). Crawling and walking infants elicit different verbal responses from mothers. Developmental Science, 17(3), 388–395. https://doi.org/10.1111/desc.12129.

    Article  PubMed  Google Scholar 

  • Kim, Y. S., Leventhal, B. L., Koh, Y. J., Fombonne, E., Laska, E., Lim, E. C., et al. (2011). Prevalence of autism spectrum disorders in a total population sample. American Journal of Psychiatry, 168(9), 904–912. https://doi.org/10.1176/appi.ajp.2011.10101532.

    Article  PubMed  Google Scholar 

  • Kirkovski, M., Enticott, P. G., & Fitzgerald, P. B. (2013). A review of the role of female gender in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(11), 2584–2603. https://doi.org/10.1007/s10803-013-1811-1.

    Article  PubMed  Google Scholar 

  • Lai, M. C., Lombardo, M. V., Auyeung, B., Chakrabarti, B., & Baron-Cohen, S. (2015). Sex/gender differences and autism: Setting the scene for future research. Journal of the American Academy of Child and Adolescent Psychiatry, 54(1), 11–24. https://doi.org/10.1016/j.jaac.2014.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landa, R., & Garrett-Mayer, E. (2006). Development in infants with autism spectrum disorders: A prospective study. Journal of Child Psychology and Psychiatry, 47(6), 629–638. https://doi.org/10.1111/j.1469-7610.2006.01531.x.

    Article  PubMed  Google Scholar 

  • Lane, A., Harpster, K., & Heathcock, J. (2012). Motor characteristics of young children referred for possible autism spectrum disorder. Pediatric Physical Therapy, 24(1), 21–29. https://doi.org/10.1097/PEP.0b013e31823e071a.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemcke, S., Juul, S., Parner, E. T., Lauritsen, M. B., & Thorsen, P. (2013). Early signs of autism in toddlers: A follow-up study in the Danish National Birth Cohort. Journal of Autism and Developmental Disorders, 43(10), 2366–2375. https://doi.org/10.1007/s10803-013-1785-z.

    Article  PubMed  Google Scholar 

  • Leonard, H. C., Bedford, R., Charman, T., Elsabbagh, M., Johnson, M. H., & Hill, E. L. (2014). Motor development in children at risk of autism: A follow-up study of infant siblings. Autism, 18(3), 281–291. https://doi.org/10.1177/1362361312470037.

    Article  PubMed  Google Scholar 

  • Levy, S. E., Giarelli, E., Lee, L. C., Schieve, L. A., Kirby, R. S., Cunniff, C., et al. (2010). Autism spectrum disorder and co-occurring developmental, psychiatric, and medical conditions among children in multiple populations of the United States. Journal of Developmental and Behavioral Pediatrics, 31(4), 267–275. https://doi.org/10.1097/DBP.0b013e3181d5d03b.

    Article  PubMed  Google Scholar 

  • Lichtenstein, P., Carlstrom, E., Rastam, M., Gillberg, C., & Anckarsater, H. (2010). The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. American Journal of Psychiatry, 167(11), 1357–1363. https://doi.org/10.1176/appi.ajp.2010.10020223.

    Article  PubMed  Google Scholar 

  • Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. Lancet, 392(10146), 508–520. https://doi.org/10.1016/s0140-6736(18)31129-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord, C., Rutter, M., DiLavore, P. S., & Risi, S. (1999). Autism diagnostic observation schedule (ADOS). Los Angeles: Western Psychological Services.

    Google Scholar 

  • Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.

    Article  PubMed  Google Scholar 

  • Lundstrom, S., Chang, Z., Kerekes, N., Gumpert, C. H., Rastam, M., Gillberg, C., et al. (2011). Autistic-like traits and their association with mental health problems in two nationwide twin cohorts of children and adults. Psychological Medicine, 41(11), 2423–2433. https://doi.org/10.1017/s0033291711000377.

    Article  PubMed  Google Scholar 

  • MacDonald, M., Lord, C., & Ulrich, D. A. (2013). The relationship of motor skills and social communicative skills in school-aged children with autism spectrum disorder. Adapted Physical Activity Quarterly, 30(3), 271–282.

    Article  PubMed  Google Scholar 

  • MacDonald, M., Lord, C., & Ulrich, D. A. (2014). Motor skills and calibrated autism severity in young children with autism spectrum disorder. Adapted Physical Activity Quarterly, 31(2), 95–105. https://doi.org/10.1123/apaq.2013-0068.

    Article  PubMed  Google Scholar 

  • Mandy, W., Pellicano, L., St Pourcain, B., Skuse, D., & Heron, J. (2018). The development of autistic social traits across childhood and adolescence in males and females. J Child Psychol Psychiatry. https://doi.org/10.1111/jcpp.12913.

    Article  PubMed  Google Scholar 

  • Matson, J. L., Mahan, S., Kozlowski, A. M., & Shoemaker, M. (2010). Developmental milestones in toddlers with autistic disorder, pervasive developmental disorder-not otherwise specified and atypical development. Developmental Neurorehabilitation, 13(4), 239–247. https://doi.org/10.3109/17518423.2010.481299.

    Article  PubMed  Google Scholar 

  • Moreno-De-Luca, A., Myers, S. M., Challman, T. D., Moreno-De-Luca, D., Evans, D. W., & Ledbetter, D. H. (2013). Developmental brain dysfunction: Revival and expansion of old concepts based on new genetic evidence. The Lancet Neurology, 12(4), 406–414. https://doi.org/10.1016/s1474-4422(13)70011-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oien, R. A., Schjolberg, S., Volkmar, F. R., Shic, F., Cicchetti, D. V., Nordahl-Hansen, A., et al. (2018). Clinical features of children with autism who passed 18-month screening. Pediatrics. https://doi.org/10.1542/peds.2017-3596.

    Article  PubMed  Google Scholar 

  • Onis, M. (2006a). Assessment of sex differences and heterogeneity in motor milestone attainment among populations in the WHO Multicentre Growth Reference Study. Acta Paediatrica, 450, 66–75.

    Google Scholar 

  • Onis, M. (2006b). WHO motor development study: Windows of achievement for six gross motor development milestones. Acta Paediatrica, 450, 86–95.

    Google Scholar 

  • Ozonoff, S., Young, G. S., Goldring, S., Greiss-Hess, L., Herrera, A. M., Steele, J., et al. (2008). Gross motor development, movement abnormalities, and early identification of autism. Journal of Autism and Developmental Disorders, 38(4), 644–656. https://doi.org/10.1007/s10803-007-0430-0.

    Article  PubMed  Google Scholar 

  • Posserud, M. B., Lundervold, A. J., & Gillberg, C. (2006). Autistic features in a total population of 7-9-year-old children assessed by the ASSQ (Autism Spectrum Screening Questionnaire). Journal of Child Psychology and Psychiatry, 47(2), 167–175. https://doi.org/10.1111/j.1469-7610.2005.01462.x.

    Article  PubMed  Google Scholar 

  • Rodwell, L., Lee, K. J., Romaniuk, H., & Carlin, J. B. (2014). Comparison of methods for imputing limited-range variables: A simulation study. BMC Medical Research Methodology, 14(1), 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutter, M., Bailey, A., & Lord, C. (2003a). The social communication questionnaire. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Rutter, M., Le Couteur, A., & Lord, C. (2003b). Autism diagnostic interview-revised. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Ryland, H. K., Hysing, M., Posserud, M. B., Gillberg, C., & Lundervold, A. J. (2012). Autism spectrum symptoms in children with neurological disorders. Child and Adolescent Psychiatry and Mental Health, 6(1), 34. https://doi.org/10.1186/1753-2000-6-34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skuse, D. H., Mandy, W., Steer, C., Miller, L. L., Goodman, R., Lawrence, K., et al. (2009). Social communication competence and functional adaptation in a general population of children: Preliminary evidence for sex-by-verbal IQ differential risk. Journal of the American Academy of Child and Adolescent Psychiatry, 48(2), 128–137. https://doi.org/10.1097/CHI.0b013e31819176b8.

    Article  PubMed  Google Scholar 

  • Staples, K. L., MacDonald, M., & Zimmer, C. (2012). Assessment of motor behavior among children and adolescents with autism spectrum disorder. International Review of Research in Developmental Disabilities, 42, 179–214.

    Article  Google Scholar 

  • Storvold, G. V., Aarethun, K., & Bratberg, G. H. (2013). Age for onset of walking and prewalking strategies. Early Human Development, 89(9), 655–659. https://doi.org/10.1016/j.earlhumdev.2013.04.010.

    Article  PubMed  Google Scholar 

  • Suren, P., Bakken, I. J., Aase, H., Chin, R., Gunnes, N., Lie, K. K., et al. (2012). Autism spectrum disorder, ADHD, epilepsy, and cerebral palsy in Norwegian children. Pediatrics, 130(1), e152–158. https://doi.org/10.1542/peds.2011-3217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Buuren, S. (2018). Flexible imputation of missing data. New York: Chapman and Hall.

    Book  Google Scholar 

  • Walle, E. A., & Campos, J. J. (2014). Infant language development is related to the acquisition of walking. Developmental Psychology, 50(2), 336–348. https://doi.org/10.1037/a0033238.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2003). Wechsler intelligence scale for children (WISC-IV) (4th ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2008). Wechsler adult intelligence scale (WAIS-IV) (4th ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2012). Wechsler preschool and primary scale of intelligence (4th ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • West, K. L. (2018). Infant motor development in autism spectrum disorder: A synthesis and meta-analysis. Child Development. https://doi.org/10.1111/cdev.13086.

    Article  PubMed  Google Scholar 

  • West, K. L., Leezenbaum, N. B., Northrup, J. B., & Iverson, J. M. (2017). The relation between walking and language in infant siblings of children with autism spectrum disorder. Child Development. https://doi.org/10.1111/cdev.12980.

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.

    Google Scholar 

  • Zwaigenbaum, L., Bauman, M. L., Stone, W. L., Yirmiya, N., Estes, A., Hansen, R. L., et al. (2015). Early identification of autism spectrum disorder: Recommendations for practice and research. Pediatrics, 136(Suppl 1), S10–40. https://doi.org/10.1542/peds.2014-3667C.

    Article  PubMed  Google Scholar 


Page 2

From: Age of First Walking and Associations with Symptom Severity in Children with Suspected or Diagnosed Autism Spectrum Disorder

  ASD (n = 376) Non-ASD (n = 114)
n (%) Mean (SD) n (%) Mean (SD)
Sex       
 Male 292 (77.7)   85 (74.6)  
Early motor development       
 AOW (months) 376   14.7 (4.3) 114   13.8 (2.9)
 “Late walking” (≥ 16 months) 117 (31.1)   28 (24.6)  
Diagnoses       
 ASD (F84) 376 (100.0)   0 0  
 Former ASD 0 0   6 (5.5)  
 Intellectual Disability (F70–79) 49 (15.1)   9 (9.8)  
 ADHD (F90) 114 (36.2)   52 (55.9)  
 Communication disorder (F80) 12 (3.8)   23 (23.0)  
 Specific learning disorder (F81 + F83) 18 (5.7)   22 (23.4)  
 Motor disorders (F82 + F95) 35 (11.1)   27 (29.0)  
 Epilepsy 25 (6.6)   8 (7.0)  
 Cerebral Palsy 1 (.3)   1 (.9)  
 Other NDD (F88 + F89 + F94) 4 (1.3)   8 (8.4)  
No of NDDs       
 0 0 0   8 (7.6)  
 1 179 (48.2)   53 (50.5)  
 2–3 182 (49.1)   40 (38.1)  
 ≥ 4 10 (2.7)   4 (3.8)  
Verbal language 305 (92.7)   100 (100.0)  
Age (years) at inclusion 376   11.4 (3.8) 114   10.2 (3.6)
Age (years) at ASD diagnosis 326   9.3 (4.2)    
Nonverbal IQ 254   102.3 (17.7) 85   100.9 (17.5)
Verbal IQ 258   89.1 (17.8) 86   92.9 (18.0)
Paternal age (years) 213   32.5 (6.3) 69   32.9 (6.5)
Maternal age (years) 231   30.3 (5.0) 73   30.8 (5.5)
Prematurity 50 (14.8)   15 (15.5)  
Ethnicity       
 European (Caucasian) 281 (81.2)   98 (89.1)  

  1. AOW age for onset of independent walking, ASD autism spectrum disorder, ADHD attention-deficit/hyperactivity disorder, NDD neurodevelopmental disorder. Data are expressed as n (%) or mean (SD). The denominator for the reported proportions in this table excludes those with missing data: 151 participants for nonverbal IQ; 146 for verbal IQ; 61 for language level; 56 for prematurity; 34 for ethnicity; 208 for paternal age; 186 for maternal age; 14 for number of NDDs, and 52 ASD cases for age at diagnosis. IQ was obtained from various age-appropriate standardized tests