Which of the following statements best explains why the Devils Hole pupfish are able to live in this environment?

1. Ludwig D. 1996. The distribution of population survival times. Am. Nat. 147, 506–526. ( 10.1086/285863) [CrossRef] [Google Scholar]

2. Gilpin ME, Soulé ME. 1986. Minimum viable populations: processes of species extinction. In Conservation biology: the science of scarcity and diversity (ed. Soulé ME.), pp. 19–34. Sunderland, MA: Sinauer Associates. [Google Scholar]

3. Fagan WF, Holmes EE. 2006. Quantifying the extinction vortex. Ecol. Lett. 9, 51–60. ( 10.1111/j.1461-0248.2005.00845.x) [PubMed] [CrossRef] [Google Scholar]

4. Brook BW, Sodhi NS, Bradshaw CJA. 2008. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460. ( 10.1016/j.tree.2008.03.011) [PubMed] [CrossRef] [Google Scholar]

5. Thomas CD. 1990. What do real population dynamics tell us about minimum viable population sizes? Conserv. Biol. 4, 324–327. ( 10.1111/j.1523-1739.1990.tb00295.x) [CrossRef] [Google Scholar]

6. Fagan WF, Kennedy CM, Unmack PJ. 2005. Quantifying rarity, losses, and risks for native fishes of the Lower Colorado River Basin: implications for conservation listing. Conserv. Biol. 19, 1872–1882. ( 10.1111/j.1523-1739.2005.00215.x) [CrossRef] [Google Scholar]

7. Wolf CM, Griffith B, Reed C, Temple SA. 1996. Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv. Biol. 10, 1142–1154. ( 10.1046/j.1523-1739.1996.10041142.x) [CrossRef] [Google Scholar]

8. Green RE. 1997. The influence of numbers released on the outcome of attempts to introduce exotic bird species to New Zealand. J. Anim. Ecol. 66, 25–35. ( 10.2307/5961) [CrossRef] [Google Scholar]

9. Simberloff D, Gibbons L. 2004. Now you see them, now you don't!: population crashes of established introduced species. Biol. Invas. 6, 161–172. ( 10.1023/B:BINV.0000022133.49752.46) [CrossRef] [Google Scholar]

10. Reed DH, O'Grady JJ, Brook BW, Ballou JD, Frankham R. 2003. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol. Conserv. 113, 23–34. ( 10.1016/S0006-3207(02)00346-4) [CrossRef] [Google Scholar]

11. Trail LW, Bradshaw CJA, Brook BW. 2007. Minimum viable population size: a metaanalysis of 30 years of published estimates. Biol. Conserv. 139, 159–166. ( 10.1016/j.biocon.2007.06.011) [CrossRef] [Google Scholar]

12. Walter HS. 1990. Small viable population: the red-tailed hawk of Socorro Island. Conserv. Biol. 4, 441–443. ( 10.1111/j.1523-1739.1990.tb00319.x) [CrossRef] [Google Scholar]

13. Simberloff D. 1998. Small and declining populations. In Conservation science and action (ed. Sutherland W.), pp. 116–134. Oxford, UK: Blackwell. [Google Scholar]

14. Grant PR, Curry RL, Grant BR. 2000. A remnant population of the Floreana mockingbird on champion island, Galápagos. Biol. Conserv. 92, 285–290. ( 10.1016/S0006-3207(99)00092-0) [CrossRef] [Google Scholar]

15. Habel JC, Zachos FE, Finger A, Meyer M, Louy D, Assmann T, Schmitt T. 2009. Unprecedented long-term genetic monomorphism in an endangered relict butterfly species. Conserv. Genet. 10, 1659–1665. ( 10.1007/s10592-008-9744-5) [CrossRef] [Google Scholar]

16. Shoemaker KT, Breisch AR, Jaycox JW, Gibbs JP. 2013. Reexamining the minimum viable population concept for long-lived species. Conserv. Biol. 27, 542–551. ( 10.1111/cobi.12028) [PubMed] [CrossRef] [Google Scholar]

17. Reed JM, McCoy ED. 2014. Relation of minimum viable population size to biology, time frame, and objective. Conserv. Biol. 28, 867–870. ( 10.1111/cobi.12274) [PubMed] [CrossRef] [Google Scholar]

18. Miller RR. 1981. Coevolution of deserts and pupfishes (Genus Cyprionodon) in the American Southwest. In Fishes in North American deserts (eds Naiman RJ, Soltz DL.), pp. 39–94. New York, NY: John Wiley and Sons. [Google Scholar]

19. Brown JH. 1995. Species dynamics. In Macroecology (ed. Brown J.), pp. 161–165. Chicago, IL: University of Chicago Press. [Google Scholar]

20. Walters JR, Crist EL. 2006. Rediscovering the king of woodpeckers: exploring the implications. Avian Conserv. Ecol. 1, 1–6. [Google Scholar]

21. Riggs AC, Deacon JE. 2004. Connectivity in desert aquatic ecosystems: the Devils Hole story. In Conf. Proc., 2002, Spring-fed wetlands: important scientific and cultural resources of the intermountain region, May 7–9, 2002, Las Vegas, NV: (eds Sada DW, Sharpe SE.), pp. 1–38. DHS Publication no. 41210; (http://wetlands.dri.edu) [Google Scholar]

22. Winograd L, Szabo B. 1991. Time of isolation of Cyprinodon diabolis in Devil's Hole: geologic evidence. Proc. Desert Fishes Counc. XX–XXI, 49–50. [Google Scholar]

23. Szabo B, Kolesar P, Riggs A, Winograd I, Ludwig K. 1994. Paleoclimatic inferences from a 120,000-yr. calcite record of water table fluctuation in Brown's Room of Devil's Hole, Nevada. Quat. Res. 41, 59–69. ( 10.1006/qres.1994.1007) [CrossRef] [Google Scholar]

24. U.S. Fish and Wildlife Service. 1990. Recovery plan for the endangered and threatened species of Ash Meadows, Nevada. Portland, OR: U.S. Fish and Wildlife Service. [Google Scholar]

25. Chernoff B. 1985. Population dynamics of the Devils Hole pupfish. Environ. Biol. Fishes. 13, 139–147. ( 10.1007/BF00002582) [CrossRef] [Google Scholar]

26. Deacon JE, Taylor FR, Pedretti JW. 1995. Egg viability and ecology of Devils Hole pupfish: insights from captive propagation. Southw. Natur. 40, 216–223. [Google Scholar]

27. Deacon JD, Williams CD. 1991. Ash Meadows and the legacy of the Devil's Hole pupfish. In Battle against extinction: native fish management in the American West (eds Minckley WL, Deacon JD.), pp. 69–87. Tucson, AZ: University of Arizona Press. [Google Scholar]

28. Andersen ME, Deacon JE. 2001. Population size of Devils Hole pupfish (Cyprinodon diabolis) correlates with water level. Copeia 2001, 224–228. ( 10.1643/0045-8511(2001)001[0224:PSODHP]2.0.CO;2) [CrossRef] [Google Scholar]

29. Martin AP, Echelle AA, Zegers G, Baker S, Keeler-Foster CL. 2012. Dramatic shifts in the gene pool of a managed population of an endangered species may be exacerbated by high genetic load. Conserv. Genetics 13, 349–358. ( 10.1007/s10592-011-0289-7) [CrossRef] [Google Scholar]

30. Dzul MC, Dinsmore SJ, Quist MC, Gaines DB, Wilson KP, Bower MR, Dixon PM. 2013. A simulation model of the Devils Hole pupfish population using monthly length-frequency distributions. Popul. Ecol. 55, 325–341. ( 10.1007/s10144-013-0361-x) [CrossRef] [Google Scholar]

31. Foley P. 1994. Predicting extinction times from environmental stochasticity and carrying capacity. Conserv. Biol. 8, 124–37. ( 10.1046/j.1523-1739.1994.08010124.x) [CrossRef] [Google Scholar]

32. Lotts KC, Waite TW, Vucetich JA. 2004. Reliability of absolute and relative predictions of population persistence based on time series. Conserv. Biol. 18, 1224–1232. ( 10.1111/j.1523-1739.2004.00285.x) [CrossRef] [Google Scholar]

33. Manning L, Wullschleger J. 2004. Devils Hole update. Proc. Desert Fishes Counc. 36, 39. [Google Scholar]

34. Zegers G, Baker S, Heideman K, Keeler-Foster C. 2009. Devils Hole pupfish: rapid response genetic analysis and genetic management for intensive propagation and recovery. Dexter National Fish Hatchery & Technology Center, U.S. Fish & Wildlife Service; Study Number: DX-06–013. [Google Scholar]

35. Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A. 2014. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189. ( 10.1093/bioinformatics/btt763) [PubMed] [CrossRef] [Google Scholar]

36. Echelle A, Dowling T. 1992. Mitochondrial DNA variation and evolution of the Death Valley pupfishes (Cyprinodon, Cyprinodontidae). Evolution 46, 193–206. ( 10.2307/2409814) [PubMed] [CrossRef] [Google Scholar]

37. Echelle AA, Echelle AF. 1993. Allozyme perspective on mitochondrial DNA variation and evolution of the Death Valley pupfishes (Cyprinodontidae: Cyprinodon). Copeia 1993, 275–287. ( 10.2307/1447128) [PubMed] [CrossRef] [Google Scholar]

38. Karam AP, Parker MS, Lyons LT. 2012. Ecological comparison between three artificial refuges and the natural habitat for Devils Hole pupfish. North Am. J. Fish. Manag. 32, 224–238. ( 10.1080/02755947.2012.672870) [CrossRef] [Google Scholar]

39. Estoup A, Beaumont M, Sennedot F, Moritz C, Cornuet J-M. 2004. Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad, Bufo marinus. Evolution 58, 2021–2036. ( 10.1111/j.0014-3820.2004.tb00487.x) [PubMed] [CrossRef] [Google Scholar]

40. Weir BS, Cockerham C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. ( 10.2307/2408641) [PubMed] [CrossRef] [Google Scholar]

41. Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW. 1995. An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463–471. [PMC free article] [PubMed] [Google Scholar]

42. Chakraborty R, Jin L. 1993. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances. EXS 67, 153–175. [PubMed] [Google Scholar]

43. Estoup A, Jarne P, Cornuet J-M. 2002. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604. ( 10.1046/j.1365-294X.2002.01576.x) [PubMed] [CrossRef] [Google Scholar]

44. Guillemaud T, Beaumont MA, Ciosi M, Corneut J-M, Estoup A. 2010. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity 104, 88–99. ( 10.1038/hdy.2009.92) [PubMed] [CrossRef] [Google Scholar]

45. Riggs AC. 1991. Geohydrologic evidence for the development of Devils Hole, southern Nevada as an aquatic environment. Proc. Desert Fish. Counc. 20, 47–48. [Google Scholar]

46. Duvernell D, Turner B. 1998. Evolutionary genetics of Death Valley pupfish populations: mitochondrial DNA sequence variation and population structure. Mol. Ecol. 7, 279–288. ( 10.1046/j.1365-294X.1998.00347.x) [CrossRef] [Google Scholar]

47. Sada DW, Vinyard GL. 2002. Anthropogenic changes in biogeography of Great Basin aquatic biota. Smithson. Contrib. Earth Sci. 33, 277–293. [Google Scholar]

48. Miller RR. 1943. Cyprinodon salinus, a new species of fish from Death Valley, California. Copeia 1943, 69–78. ( 10.2307/1437768) [CrossRef] [Google Scholar]

49. Wilke PJ, Lawton HW. 1976. The expedition of Capt. J. W. Davidson from Fort Tejon to the Owens Valley in 1859. Sorroco, NM: Ballena Press Publications in Archaeology and History No. 8. [Google Scholar]

50. Williams JE. 1977. Observations on the status of the Devil's Hole pupfish in the Hoover Dam REFUGIUM. Denver, CO: U.S. Dept. of the Interior, Bureau of Reclamation, REC-ERC-77–11. [Google Scholar]

51. Wilcox JL, Martin AP. 2006. The devil's in the details: genetic and phenotypic divergence between artificial and native populations of the endangered pupfish (Cyprinodon diabolis). Anim. Conserv. 9, 316–321. ( 10.1111/j.1469-1795.2006.00039.x) [CrossRef] [Google Scholar]

52. Lema SC, Nevitt GA. 2006. Testing an ecomorphological mechanism of morphological plasticity in pupfish and its relevance to conservation efforts for endangered Devils Hole pupfish. J. Exp. Biol. 209, 3499–3509. ( 10.1242/jeb.02417) [PubMed] [CrossRef] [Google Scholar]

53. Collyer ML, Heilveil JS, Stockwell CA. 2011. Contemporary evolutionary divergence for a protected species following assisted colonization. PLoS ONE 6, e22310 ( 10.1371/journal.pone.0022310) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Stockwell CA, Heilveil JS, Purcell K. 2013. Estimating divergence time for two evolutionarily significant units of a protected fish species. Conserv. Genetics 14, 215–222. ( 10.1007/s10592-013-0447-1) [CrossRef] [Google Scholar]


Page 2

Median effective population size (Ne) estimates (and 95% credible intervals) and estimated time of divergence (years) from each of five ABC approximations of the posteriors.

effective population size (Ne)
populationapproximation-1approximation-2approximation-3approximation-4approximation-5
C. diabolis (natural)478 (399–499)389 (147–496)483 (418–500)394 (151–495)477 (394–499)
C. diabolis (refuge)33 (6–312)24 (5–287)24 (5–261)23 (18–278)59 (7–411)
C. n. mionectes1510 (902–1950)1050 (295–1940)1540 (937–1950)1080 (299–1930)194 (65–795)
divergence time between native population of C. diabolis and Hoover Dam refuge population
16 (6–25)19 (7–25)14 (5–25)19 (7–25)21 (7–25)
divergence time between native populations of C. diabolis and C. n. mionectes
1780 (447–10 600)217 (90–815)2200 (541–12 400)223 (91–774)2530 (620–14 400)