Why are there fewer muscle fibers per motor unit in the fingers than in the muscles of the thighs?

ReviewSynthesis

Published Online:https://doi.org/10.1152/japplphysiol.00290.2021

  • This is the final version - click for previous version

Abstract

Why are there fewer muscle fibers per motor unit in the fingers than in the muscles of the thighs?

The purpose of our review was to compare the distribution of motor unit properties across human muscles of different sizes and recruitment ranges. Although motor units can be distinguished based on several different attributes, we focused on four key parameters that have a significant influence on the force produced by muscle during voluntary contractions: the number of motor units, average innervation number, the distributions of contractile characteristics, and discharge rates within motor unit pools. Despite relatively few publications on this topic, current data indicate that the most influential factor in the distribution of these motor unit properties between muscles is innervation number. Nonetheless, despite a fivefold difference in innervation number between a hand muscle (first dorsal interosseus) and a lower leg muscle (tibialis anterior), the general organization of their motor unit pools, and the range of discharge rates appear to be relatively similar. These observations provide foundational knowledge for studies on the control of movement and the changes that occur with aging and neurological disorders.

REFERENCES

  • 1. Sherrington CS. Remarks on some aspects of reflex inhibition. Proc R Soc Lond B 97: 519–545, 1925. doi:10.1098/rspb.1925.0017.
    Crossref | Google Scholar
  • 2. Liddell EGT, Sherrington CS. Recruitment and some other factors of reflex inhibition. Proc R Soc Lond B 97: 488–518, 1925. doi:10.1098/rspb.1925.0016.
    Crossref | Google Scholar
  • 3. Duchateau J, Enoka RM. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res 1409: 42–61, 2011 [Erratum in Brain Res 1421: 121, 2011]. doi:10.1016/j.brainres.2011.06.011.
    Crossref | PubMed | ISI | Google Scholar
  • 4. Adrian ED, Bronk DW. The discharge of impulses in motor nerve fibres: Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol 67: 9–151, 1929.
    Crossref | PubMed | Google Scholar
  • 5. Henneman E. Relation between size of neurons and their susceptibility to discharge. Science 126: 1345–1347, 1957. doi:10.1126/science.126.3287.1345.
    Crossref | PubMed | ISI | Google Scholar
  • 6. Henneman E. Functional organization of motoneuron pools: the size principle. Proc Int Union Physiol Sci 12, 1977.
    Google Scholar
  • 7. Enoka RM. Physiological validation of the decomposition of surface EMG signals. J Electromyogr Kinesiol 46: 70–83, 2019. doi:10.1016/j.jelekin.2019.03.010.
    Crossref | PubMed | ISI | Google Scholar
  • 8. Enoka RM, Farina D. Force steadiness: from motor units to voluntary actions. Physiology (Bethesda) 36: 114–130, 2021. doi:10.1152/physiol.00027.2020.
    Link | ISI | Google Scholar
  • 9. Enoka RM, Fuglevand AJ. Motor unit physiology: some unresolved issues. Muscle Nerve 24: 4–17, 2001. doi:10.1002/1097-4598(200101)24:1<4::aid-mus13>3.0.co;2-f.
    Crossref | PubMed | ISI | Google Scholar
  • 10. Farina D, Negro F, Muceli S, Enoka RM. Principles of motor unit physiology evolve with advances in technology. Physiology (Bethesda) 31: 83–94, 2016. doi:10.1152/physiol.00040.2015.
    Link | ISI | Google Scholar
  • 11. Heckman CJ, Enoka RM. Motor unit. Compr Physiol 2: 2629–2682, 2012. doi:10.1002/cphy.c100087.
    Crossref | PubMed | ISI | Google Scholar
  • 12. Enoka RM. Morphological features and activation patterns of motor units. J Clin Neurophysiol 12: 538–559, 1995. doi:10.1097/00004691-199511000-00002.
    Crossref | PubMed | ISI | Google Scholar
  • 13. Manuel M, Chardon M, Tysseling V, Heckman CJ. Scaling of motor output, from mouse to humans. Physiology (Bethesda) 34: 5–13, 2019. doi:10.1152/physiol.00021.2018.
    Link | ISI | Google Scholar
  • 14. Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66: 254–262, 1993. doi:10.1007/BF00235103.
    Crossref | PubMed | ISI | Google Scholar
  • 15. Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467: 1074–1082, 2009. doi:10.1007/s11999-008-0594-8.
    Crossref | PubMed | ISI | Google Scholar
  • 16. Macefield VG, Fuglevand AJ, Bigland-Ritchie B. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation. J Neurophysiol 75: 2509–2519, 1996. doi:10.1152/jn.1996.75.6.2509.
    Link | ISI | Google Scholar
  • 17. Thomas CK, Bigland-Richie B, Johansson RS. Force-frequency relationships of human thenar motor units. J Neurophysiol 65: 1509–1516, 1991. doi:10.1152/jn.1991.65.6.1509.
    Link | ISI | Google Scholar
  • 18. Van Cutsem M, Feiereisen P, Duchateau J, Hainaut K. Mechanical properties and behaviour of motor units in the tibialis anterior during voluntary contractions. Can J Appl Physiol 22: 585–597, 1997. doi:10.1139/h97-038.
    Crossref | PubMed | Google Scholar
  • 19. De Luca CJ, LeFever RS, McCue MP, Xenakis AP. Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329: 113–128, 1982. doi:10.1113/jphysiol.1982.sp014293.
    Crossref | PubMed | ISI | Google Scholar
  • 20. Duchateau J, Hainaut K. Effects of immobilization on contractile properties, recruitment and firing rates of human motor units. J Physiol 422: 55–65, 1990. doi:10.1113/jphysiol.1990.sp017972.
    Crossref | PubMed | ISI | Google Scholar
  • 21. Kukulka CG, Clamann HP. Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res 219: 45–55, 1981. doi:10.1016/0006-8993(81)90266-3.
    Crossref | PubMed | ISI | Google Scholar
  • 22. Moritz CT, Barry BK, Pascoe MA, Enoka RM. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93: 2449–2459, 2005. doi:10.1152/jn.01122.2004.
    Link | ISI | Google Scholar
  • 23. Aeles J, Kelly LA, Yoshitake Y, Cresswell AG. Fine-wire recordings of flexor hallucis brevis motor units up to maximal voluntary contraction reveal a flexible, nonrigid mechanism for force control. J Neurophysiol 123: 1766–1774, 2020. doi:10.1152/jn.00023.2020.
    Link | ISI | Google Scholar
  • 24. Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597: 1873–1887, 2019. doi:10.1113/JP277250.
    Crossref | PubMed | ISI | Google Scholar
  • 25. Feinstein B, Lindegard B, Nyman E, Wohlfart G. Morphologic studies of motor units in normal human muscles. Acta Anat (Basel) 23: 127–142, 1955. doi:10.1159/000140989.
    Crossref | PubMed | Google Scholar
  • 26. Rexed B, Therman PO. Calibre spectra of motor and sensory nerve fibres to flexor and extensor muscles. J Neurophysiol 11: 133–139, 1948. doi:10.1152/jn.1948.11.2.133.
    Link | ISI | Google Scholar
  • 27. Christensen E. Topography of terminal motor innervation in striated muscles from stillborn infants. Am J Phys Med 38: 65–78, 1959.
    Crossref | PubMed | Google Scholar
  • 28. Lee RG, Ashby P, White DG, Aguayo AJ. Analysis of motor conduction velocity in the human median nerve by computer simulation of compound muscle action potentials. Electroencephalogr Clin Neurophysiol 39: 225–237, 1975. doi:10.1016/0013-4694(75)90144-3.
    Crossref | PubMed | Google Scholar
  • 29. Neto HS, Filho JM, Passini R Jr, Marques MJ. Number and size of motor units in thenar muscles. Clin Anat 17: 308–311, 2004. doi:10.1002/ca.10205.
    Crossref | PubMed | ISI | Google Scholar
  • 30. Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE. Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266: 97–119, 1983. doi:10.1016/0006-8993(83)91312-4.
    Crossref | PubMed | ISI | Google Scholar
  • 31. Gesslbauer B, Hruby LA, Roche AD, Farina D, Blumer R, Aszmann OC. Axonal components of nerves innervating the human arm. Ann Neurol 82: 396–408, 2017. doi:10.1002/ana.25018.
    Crossref | PubMed | ISI | Google Scholar
  • 32. Konakci KZ, Streicher J, Hoetzenecker W, Blumer MJ, Lukas JR, Blumer R. Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Invest Ophthalmol Vis Sci 46: 155–165, 2005. doi:10.1167/iovs.04-1087.
    Crossref | PubMed | ISI | Google Scholar
  • 33. Banks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat 208: 753–768, 2006. doi:10.1111/j.1469-7580.2006.00558.x.
    Crossref | PubMed | ISI | Google Scholar
  • 34. Bromberg MB. Updating motor unit number estimation (MUNE). Clin Neurophysiol 118: 1–8, 2007. doi:10.1016/j.clinph.2006.07.304.
    Crossref | PubMed | ISI | Google Scholar
  • 35. Gooch CL, Doherty TJ, Chan KM, Bromberg MB, Lewis RA, Stashuk DW, Berger MJ, Andary MT, Daube JR. Motor unit number estimation: a technology and literature review. Muscle Nerve 50: 884–893, 2014. doi:10.1002/mus.24442.
    Crossref | PubMed | ISI | Google Scholar
  • 36. McComas AJ, Fawcett PR, Campbell MJ, Sica RE. Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry 34: 121–131, 1971. doi:10.1136/jnnp.34.2.121.
    Crossref | PubMed | ISI | Google Scholar
  • 37. Brown WF, Strong MJ, Snow R. Methods for estimating numbers of motor units in biceps-brachialis muscles and losses of motor units with aging. Muscle Nerve 11: 423–432, 1988. doi:10.1002/mus.880110503.
    Crossref | PubMed | ISI | Google Scholar
  • 38. Doherty TJ, Brown WF. The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16: 355–366, 1993. doi:10.1002/mus.880160404.
    Crossref | PubMed | ISI | Google Scholar
  • 39. Brown WF, Milner-Brown HS. Some electrical properties of motor units and their effects on the methods of estimating motor unit numbers. J Neurol Neurosurg Psychiatry 39: 249–257, 1976. doi:10.1136/jnnp.39.3.249.
    Crossref | PubMed | ISI | Google Scholar
  • 40. Stein RB, Yang JF. Methods for estimating the number of motor units in human muscles. Ann Neurol 28: 487–495, 1990. doi:10.1002/ana.410280404.
    Crossref | PubMed | ISI | Google Scholar
  • 41. Doherty TJ, Stashuk DW, Brown WF. Determinants of mean motor unit size: impact on estimates of motor unit number. Muscle Nerve 16: 1326–1331, 1993. doi:10.1002/mus.880161209.
    Crossref | PubMed | ISI | Google Scholar
  • 42. McNeil CJ, Doherty TJ, Stashuk DW, Rice CL. The effect of contraction intensity on motor unit number estimates of the tibialis anterior. Clin Neurophysiol 116: 1342–1347, 2005. doi:10.1016/j.clinph.2005.02.006.
    Crossref | PubMed | ISI | Google Scholar
  • 43. Keenan KG, Farina D, Merletti R, Enoka RM. Amplitude cancellation reduces the size of motor unit potentials averaged from the surface EMG. J Appl Physiol (1985) 100: 1928–1937, 2006. doi:10.1152/japplphysiol.01282.2005.
    Link | ISI | Google Scholar
  • 44. Stashuk DW, Doherty TJ, Kassam A, Brown WF. Motor unit number estimates based on the automated analysis of F-responses. Muscle Nerve. 17: 881–890, 1994. doi:10.1002/mus.880170807.
    Crossref | PubMed | ISI | Google Scholar
  • 45. van Dijk JP, Schelhaas HJ, Van Schaik IN, Janssen HM, Stegeman DF, Zwarts MJ. Monitoring disease progression using high-density motor unit number estimation in amyotrophic lateral sclerosis. Muscle Nerve 42: 239–244, 2010. doi:10.1002/mus.21680.
    Crossref | PubMed | ISI | Google Scholar
  • 46. Neuwirth C, Nandedkar S, Stålberg E, Weber M. Motor unit number index (MUNIX): a novel neurophysiological technique to follow disease progression in amyotrophic lateral sclerosis. Muscle Nerve 42: 379–384, 2010. doi:10.1002/mus.21707.
    Crossref | PubMed | ISI | Google Scholar
  • 47. DeForest BA, Winslow J, Thomas CK. Improved motor unit number estimate when motor unit alternation is addressed. J Appl Physiol (1985) 125: 1131–1140, 2018. doi:10.1152/japplphysiol.00910.2017.
    Link | ISI | Google Scholar
  • 48. Milner-Brown HS, Stein RB, Yemm R. The contractile properties of human motor units during voluntary isometric contractions. J Physiol 228: 285–306, 1973. doi:10.1113/jphysiol.1973.sp010087.
    Crossref | PubMed | ISI | Google Scholar
  • 49. Stein RB, French AS, Mannard A, Yemm R. New methods for analysing motor function in man and animals. Brain Res 40: 187–192, 1972. doi:10.1016/0006-8993(72)90126-6.
    Crossref | PubMed | ISI | Google Scholar
  • 50. Taylor A, Stephens JA. Study of human motor unit contractions by controlled intramuscular microstimulation. Brain Res 117: 331–335, 1976. doi:10.1016/0006-8993(76)90742-3.
    Crossref | PubMed | ISI | Google Scholar
  • 51. Boe SG, Stashuk DW, Doherty TJ. Within-subject reliability of motor unit number estimates and quantitative motor unit analysis in a distal and proximal upper limb muscle. Clin Neurophysiol 117: 596–603, 2006. doi:10.1016/j.clinph.2005.10.021.
    Crossref | PubMed | ISI | Google Scholar
  • 52. Boe SG, Stashuk DW, Doherty TJ. Motor unit number estimates, quantitative motor unit analysis and clinical outcome measures in amyotrophic lateral sclerosis. Suppl Clin Neurophysiol 60: 181–188, 2009. doi:10.1016/s1567-424x(08)00018-4.
    Crossref | PubMed | Google Scholar
  • 53. Doherty TJ, Vandervoort AA, Taylor AW, Brown WF. Effects of motor unit losses on strength in older men and women. J Appl Physiol (1985) 74: 868–874, 1993. doi:10.1152/jappl.1993.74.2.868.
    Link | ISI | Google Scholar
  • 54. Power GA, Dalton BH, Behm DG, Doherty TJ, Vandervoort AA, Rice CL. Motor unit survival in lifelong runners is muscle dependent. Med Sci Sports Exerc 44: 1235–1242, 2012. doi:10.1249/MSS.0b013e318249953c.
    Crossref | PubMed | ISI | Google Scholar
  • 55. Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol 594: 4525–4536, 2016. doi:10.1113/JP271087.
    Crossref | PubMed | ISI | Google Scholar
  • 56. Piasecki M, Ireland A, Piasecki J, Stashuk DW, McPhee JS, Jones DA. The reliability of methods to estimate the number and size of human motor units and their use with large limb muscles. Eur J Appl Physiol 118: 767–775, 2018. doi:10.1007/s00421-018-3811-5.
    Crossref | PubMed | ISI | Google Scholar
  • 57. Piasecki M, Ireland A, Piasecki J, Stashuk DW, Swiecicka A, Rutter MK, Jones DA, McPhee JS. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol 596: 1627–1637, 2018. doi:10.1113/JP275520.
    Crossref | PubMed | ISI | Google Scholar
  • 58. Boe SG, Dalton BH, Harwood B, Doherty TJ, Rice CL. Inter-rater reliability of motor unit number estimates and quantitative motor unit analysis in the tibialis anterior muscle. Clin Neurophysiol 120: 947–952, 2009. doi:10.1016/j.clinph.2009.02.168.
    Crossref | PubMed | ISI | Google Scholar
  • 59. Hourigan ML, McKinnon NB, Johnson M, Rice CL, Stashuk DW, Doherty TJ. Increased motor unit potential shape variability across consecutive motor unit discharges in the tibialis anterior and vastus medialis muscles of healthy older subjects. Clin Neurophysiol 126: 2381–2389, 2015. doi:10.1016/j.clinph.2015.02.002.
    Crossref | PubMed | ISI | Google Scholar
  • 60. Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, Rutter MK, McPhee JS, Jones DA. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol Rep 4: e12987, 2016.doi:10.14814/phy2.12987.
    Crossref | PubMed | ISI | Google Scholar
  • 61. Jacobson MD, Raab R, Fazeli BM, Abrams RA, Botte MJ, Lieber RL. Architectural design of the human intrinsic hand muscles. J Hand Surg Am 17: 804–809, 1992. doi:10.1016/0363-5023(92)90446-v.
    Crossref | PubMed | ISI | Google Scholar
  • 62. Keen DA, Yue GH, Enoka RM. Training-related enhancement in the control of motor output in elderly humans. J Appl Physiol (1985) 77: 2648–2658, 1994. doi:10.1152/jappl.1994.77.6.2648.
    Link | ISI | Google Scholar
  • 63. Seki K, Kizuka T, Yamada H. Reduction in maximal firing rate of motoneurons after 1-week immobilization of finger muscle in human subjects. J Electromyogr Kinesiol 17: 113–120, 2007. doi:10.1016/j.jelekin.2005.10.008.
    Crossref | PubMed | ISI | Google Scholar
  • 64. Pereira Botelho D, Curran K, Lowery MM. Anatomically accurate model of EMG during index finger flexion and abduction derived from diffusion tensor imaging. PLoS Comput Biol 15: e1007267, 2019. doi:10.1371/journal.pcbi.1007267.
    Crossref | PubMed | ISI | Google Scholar
  • 65. Sale DG, MacDougall JD, Alway SE, Sutton JR. Voluntary strength and muscle characteristics in untrained men and women and male bodybuilders. J Appl Physiol (1985) 62: 1786–1793, 1987. doi:10.1152/jappl.1987.62.5.1786.
    Link | ISI | Google Scholar
  • 66. McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol (1985) 81: 2004–2012, 1996. doi:10.1152/jappl.1996.81.5.2004.
    Link | ISI | Google Scholar
  • 67. Lexell J, Henriksson-Larsén K, Sjöström M. Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117: 115–122, 1983. doi:10.1111/j.1748-1716.1983.tb07185.x.
    Crossref | PubMed | Google Scholar
  • 68. Lexell J, Taylor CC. Variability in muscle fibre areas in whole human quadriceps muscle. How much and why? Acta Physiol Scand 136: 561–568, 1989. doi:10.1111/j.1748-1716.1989.tb08702.x.
    Crossref | PubMed | Google Scholar
  • 69. Lexell J, Sjöström M, Nordlund AS, Taylor CC. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 15: 404–409, 1992. doi:10.1002/mus.880150323.
    Crossref | PubMed | ISI | Google Scholar
  • 70. D'Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R, Moro G, Miotti D, Canepari M, Bottinelli R. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol 570: 611–627, 2006. doi:10.1113/jphysiol.2005.101642.
    Crossref | PubMed | ISI | Google Scholar
  • 71. Stokes T, Timmons JA, Crossland H, Tripp TR, Murphy K, McGlory C, Mitchell CJ, Oikawa SY, Morton RW, Phillips BE, Baker SK, Atherton PJ, Wahlestedt C, Phillips SM. Molecular transducers of human skeletal muscle remodeling under different loading states. Cell Rep 32: 107980, 2020. doi:10.1016/j.celrep.2020.107980.
    Crossref | PubMed | ISI | Google Scholar
  • 72. Henriksson-Larsén K, Fridén J, Wretling ML. Distribution of fibre sizes in human skeletal muscle. An enzyme histochemical study in m tibialis anterior. Acta Physiol Scand 123: 171–177, 1985. doi:10.1111/j.1748-1716.1985.tb07583.x.
    Crossref | PubMed | Google Scholar
  • 73. Henriksson-Larsén K. Distribution, number and size of different types of fibres in whole cross-sections of female m tibialis anterior. An enzyme histochemical study. Acta Physiol Scand 123: 229–235, 1985. doi:10.1111/j.1748-1716.1985.tb07574.x.
    Crossref | PubMed | Google Scholar
  • 74. Sjöström M, Lexell J, Eriksson A, Taylor CC. Evidence of fibre hyperplasia in human skeletal muscles from healthy young men? A left-right comparison of the fibre number in whole anterior tibialis muscles. Eur J Appl Physiol Occup Physiol 62: 301–304, 1991. doi:10.1007/BF00634963.
    Crossref | PubMed | ISI | Google Scholar
  • 75. Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H, Edgerton VR. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10: 928–934, 1992. doi:10.1002/jor.1100100623.
    Crossref | PubMed | ISI | Google Scholar
  • 76. Bodine SC, Roy RR, Eldred E, Edgerton VR. Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. J Neurophysiol 57: 1730–1745, 1987. doi:10.1152/jn.1987.57.6.1730.
    Link | ISI | Google Scholar
  • 77. Kanda K, Hashizume K. Factors causing difference in force output among motor units in the rat medial gastrocnemius muscle. J Physiol 448: 677–695, 1992. doi:10.1113/jphysiol.1992.sp019064.
    Crossref | PubMed | ISI | Google Scholar
  • 78. Tötösy de Zepetnek JE, Zung HV, Erdebil S, Gordon T. Innervation ratio is an important determinant of force in normal and reinnervated rat tibialis anterior muscles. J Neurophysiol 67: 1385–1403, 1992. doi:10.1152/jn.1992.67.5.1385.
    Link | ISI | Google Scholar
  • 79. Kugelberg E, Edström L. Differential histochemical effects of muscle contractions on phosphorylase and glycogen in various types of fibres: relation to fatigue. J Neurol Neurosurg Psychiatry 31: 415–423, 1968. doi:10.1136/jnnp.31.5.415.
    Crossref | PubMed | ISI | Google Scholar
  • 80. Padykula HA, Herman E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem 3: 170–195, 1955. doi:10.1177/3.3.170.
    Crossref | PubMed | ISI | Google Scholar
  • 81. Henriksson-Larsén KB, Lexell J, Sjöström M. Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem J 15: 167–178, 1983. doi:10.1007/BF01042285.
    Crossref | PubMed | Google Scholar
  • 82. Marzilger R, Bohm S, Mersmann F, Arampatzis A. Modulation of physiological cross-sectional area and fascicle length of vastus lateralis muscle in response to eccentric exercise. J Biomech 111: 110016, 2020. doi:10.1016/j.jbiomech.2020.110016.
    Crossref | PubMed | ISI | Google Scholar
  • 83. Hodges PW, Pengel LH, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 27: 682–692, 2003. doi:10.1002/mus.10375.
    Crossref | PubMed | ISI | Google Scholar
  • 84. Burke RE, Tsairis P. Anatomy and innervation ratios in motor units of cat gastrocnemius. J Physiol 234: 749–765, 1973. doi:10.1113/jphysiol.1973.sp010370.
    Crossref | PubMed | ISI | Google Scholar
  • 85. Rafuse VF, Pattullo MC, Gordon T. Innervation ratio and motor unit force in large muscles: a study of chronically stimulated cat medial gastrocnemius. J Physiol 499: 809–823, 1997. doi:10.1113/jphysiol.1997.sp021970.
    Crossref | PubMed | ISI | Google Scholar
  • 86. Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18: 111–129, 1973. doi:10.1016/0022-510x(73)90023-3.
    Crossref | PubMed | ISI | Google Scholar
  • 87. Kernell D. Organized variability in the neuromuscular system: a survey of task-related adaptations. Arch Ital Biol 130: 19–66, 1992.
    PubMed | ISI | Google Scholar
  • 88. Westling G, Johansson RS, Thomas CK, Bigland-Ritchie B. Measurement of contractile and electrical properties of single human thenar motor units in response to intraneural motor-axon stimulation. J Neurophysiol 64: 1331–1338, 1990. doi:10.1152/jn.1990.64.4.1331.
    Link | ISI | Google Scholar
  • 89. Kossev A, Elek JM, Wohlfarth K, Schubert M, Dengler R, Wolf W. Assessment of human motor unit twitches-a comparison of spike-triggered averaging and intramuscular microstimulation. Electroencephalogr Clin Neurophysiol 93: 100–105, 1994. doi:10.1016/0168-5597(94)90072-8.
    Crossref | PubMed | Google Scholar
  • 90. Galganski ME, Fuglevand AJ, Enoka RM. Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J Neurophysiol 69: 2108–2115, 1993. doi:10.1152/jn.1993.69.6.2108.
    Link | ISI | Google Scholar
  • 91. Romaiguère P, Vedel JP, Pagni S, Zenatti A. Physiological properties of the motor units of the wrist extensor muscles in man. Exp Brain Res 78: 51–61, 1989. doi:10.1007/BF00230686.
    Crossref | PubMed | ISI | Google Scholar
  • 92. Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513: 295–305, 1998. doi:10.1111/j.1469-7793.1998.295by.x.
    Crossref | PubMed | ISI | Google Scholar
  • 93. Fuglevand AJ, Winter DA, Patla AE. Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70: 2470–2488, 1993. doi:10.1152/jn.1993.70.6.2470.
    Link | ISI | Google Scholar
  • 94. Pasquet B, Carpentier A, Duchateau J. Change in muscle fascicle length influences the recruitment and discharge rate of motor units during isometric contractions. J Neurophysiol 94: 3126–3133, 2005. doi:10.1152/jn.00537.2005.
    Link | ISI | Google Scholar
  • 95. Enoka RM, Duchateau J. Rate coding and the control of muscle force. Cold Spring Harb Perspect Med 7: a029702, 2017. doi:10.1101/cshperspect.a029702.
    Crossref | PubMed | ISI | Google Scholar
  • 96. Fuglevand AJ, Macefield VG, Bigland-Ritchie B. Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand. J Neurophysiol 81: 1718–1729, 1999. doi:10.1152/jn.1999.81.4.1718.
    Link | ISI | Google Scholar
  • 97. Bigland B, Lippold OC. Motor unit activity in the voluntary contraction of human muscle. J Physiol 125: 322–335, 1954. doi:10.1113/jphysiol.1954.sp005161.
    Crossref | PubMed | ISI | Google Scholar
  • 98. Connelly DM, Rice CL, Roos MR, Vandervoort AA. Motor unit firing rates and contractile properties in tibialis anterior of young and old men. J Appl Physiol (1985) 87: 843–852, 1999. doi:10.1152/jappl.1999.87.2.843.
    Link | ISI | Google Scholar
  • 99. Erim Z, De Luca CJ, Mineo K, Aoki T. Rank-ordered regulation of motor units. Muscle Nerve 19: 563–573, 1996. doi:10.1002/(SICI)1097-4598(199605)19:5<563::AID-MUS3>3.0.CO;2-9.
    Crossref | PubMed | ISI | Google Scholar
  • 100. Oya T, Riek S, Cresswell AG. Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions. J Physiol 587: 4737–4748, 2009. doi:10.1113/jphysiol.2009.175695.
    Crossref | PubMed | ISI | Google Scholar
  • 101. Fuglevand AJ, Lester RA, Johns RK. Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units. J Neurophysiol 113: 1310–1322, 2015. doi:10.1152/jn.00777.2014.
    Link | ISI | Google Scholar
  • 102. Gydikov A, Kosarov D. Some features of different motor units in human biceps brachii. Pflugers Arch 347: 75–88, 1974. doi:10.1007/BF00587056.
    Crossref | PubMed | ISI | Google Scholar
  • 103. Kanosue K, Yoshida M, Akazawa K, Fujii K. The number of active motor units and their firing rates in voluntary contraction of human brachialis muscle. Jpn J Physiol 29: 427–443, 1979. doi:10.2170/jjphysiol.29.427.
    Crossref | PubMed | Google Scholar
  • 104. Monster AW, Chan H. Isometric force production by motor units of extensor digitorum communis muscle in man. J Neurophysiol 40: 1432–1443, 1977. doi:10.1152/jn.1977.40.6.1432.
    Link | ISI | Google Scholar
  • 105. Person RS, Kudina LP. Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalogr Clin Neurophysiol 32: 471–483, 1972. doi:10.1016/0013-4694(72)90058-2.
    Crossref | PubMed | Google Scholar
  • 106. Tanji J, Kato M. Firing rate of individual motor units in voluntary contraction of abductor digiti minimi muscle in man. Exp Neurol 40: 771–783, 1973. doi:10.1016/0014-4886(73)90111-8.
    Crossref | PubMed | ISI | Google Scholar
  • 107. De Luca CJ, Contessa P. Hierarchical control of motor units in voluntary contractions. J Neurophysiol 107: 178–195, 2012. doi:10.1152/jn.00961.2010.
    Link | ISI | Google Scholar
  • 108. De Luca CJ, Hostage EC. Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric contractions. J Neurophysiol 104: 1034–1046, 2010 [Erratum in J Neurophysiol 107: 1544, 2012]. doi:10.1152/jn.01018.2009.
    Link | ISI | Google Scholar
  • 109. Bellemare F, Woods JJ, Johansson R, Bigland-Ritchie B. Motor-unit discharge rates in maximal voluntary contractions of three human muscles. J Neurophysiol 50: 1380–1392, 1983. doi:10.1152/jn.1983.50.6.1380.
    Link | ISI | Google Scholar
  • 110. Jesunathadas M, Klass M, Duchateau J, Enoka RM. Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles. J Appl Physiol (1985) 112: 1897–1905, 2012. doi:10.1152/japplphysiol.01372.2011.
    Link | ISI | Google Scholar
  • 111. Howard JE, McGill KC, Dorfman LJ. Age effects on properties of motor unit action potentials: ADEMG analysis. Ann Neurol 24: 207–213, 1988. doi:10.1002/ana.410240206.
    Crossref | PubMed | ISI | Google Scholar
  • 112. Petajan JH, Philip BA. Frequency control of motor unit action potentials. Electroencephalogr Clin Neurophysiol 27: 66–72, 1969. doi:10.1016/0013-4694(69)90110-2.
    Crossref | PubMed | Google Scholar
  • 113. Milner-Brown HS, Stein RB, Yemm R. Changes in firing rate of human motor units during linearly changing voluntary contractions. J Physiol 230: 371–390, 1973. doi:10.1113/jphysiol.1973.sp010193.
    Crossref | PubMed | ISI | Google Scholar
  • 114. Bigland-Ritchie BR, Furbush FH, Gandevia SC, Thomas CK. Voluntary discharge frequencies of human motoneurons at different muscle lengths. Muscle Nerve 15: 130–137, 1992. doi:10.1002/mus.880150203.
    Crossref | PubMed | ISI | Google Scholar
  • 115. Rubinstein S, Kamen G. Decreases in motor unit firing rate during sustained maximal-effort contractions in young and older adults. J Electromyogr Kinesiol 15: 536–543, 2005. doi:10.1016/j.jelekin.2005.04.001.
    Crossref | PubMed | ISI | Google Scholar
  • 116. De Luca CJ. Control properties of motor units. J Exp Biol 115: 125–136, 1985.
    Crossref | PubMed | ISI | Google Scholar