What is the purpose of PCR

Polymerase chain reaction (PCR) is a technique used to "amplify" small segments of DNA.

What is PCR?

Sometimes called "molecular photocopying," the polymerase chain reaction (PCR) is a fast and inexpensive technique used to "amplify" - copy - small segments of DNA. Because significant amounts of a sample of DNA are necessary for molecular and genetic analyses, studies of isolated pieces of DNA are nearly impossible without PCR amplification.

Often heralded as one of the most important scientific advances in molecular biology, PCR revolutionized the study of DNA to such an extent that its creator, Kary B. Mullis, was awarded the Nobel Prize for Chemistry in 1993.

  • What is PCR?

    Sometimes called "molecular photocopying," the polymerase chain reaction (PCR) is a fast and inexpensive technique used to "amplify" - copy - small segments of DNA. Because significant amounts of a sample of DNA are necessary for molecular and genetic analyses, studies of isolated pieces of DNA are nearly impossible without PCR amplification.

    Often heralded as one of the most important scientific advances in molecular biology, PCR revolutionized the study of DNA to such an extent that its creator, Kary B. Mullis, was awarded the Nobel Prize for Chemistry in 1993.

What is PCR used for?

Once amplified, the DNA produced by PCR can be used in many different laboratory procedures. For example, most mapping techniques in the Human Genome Project (HGP) relied on PCR.

PCR is also valuable in a number of laboratory and clinical techniques, including DNA fingerprinting, detection of bacteria or viruses (particularly AIDS), and diagnosis of genetic disorders.

What is the purpose of PCR

  • What is PCR used for?

    Once amplified, the DNA produced by PCR can be used in many different laboratory procedures. For example, most mapping techniques in the Human Genome Project (HGP) relied on PCR.

    PCR is also valuable in a number of laboratory and clinical techniques, including DNA fingerprinting, detection of bacteria or viruses (particularly AIDS), and diagnosis of genetic disorders.

    What is the purpose of PCR

How does PCR work?

To amplify a segment of DNA using PCR, the sample is first heated so the DNA denatures, or separates into two pieces of single-stranded DNA. Next, an enzyme called "Taq polymerase" synthesizes - builds - two new strands of DNA, using the original strands as templates. This process results in the duplication of the original DNA, with each of the new molecules containing one old and one new strand of DNA. Then each of these strands can be used to create two new copies, and so on, and so on. The cycle of denaturing and synthesizing new DNA is repeated as many as 30 or 40 times, leading to more than one billion exact copies of the original DNA segment.

The entire cycling process of PCR is automated and can be completed in just a few hours. It is directed by a machine called a thermocycler, which is programmed to alter the temperature of the reaction every few minutes to allow DNA denaturing and synthesis.

  • How does PCR work?

    To amplify a segment of DNA using PCR, the sample is first heated so the DNA denatures, or separates into two pieces of single-stranded DNA. Next, an enzyme called "Taq polymerase" synthesizes - builds - two new strands of DNA, using the original strands as templates. This process results in the duplication of the original DNA, with each of the new molecules containing one old and one new strand of DNA. Then each of these strands can be used to create two new copies, and so on, and so on. The cycle of denaturing and synthesizing new DNA is repeated as many as 30 or 40 times, leading to more than one billion exact copies of the original DNA segment.

    The entire cycling process of PCR is automated and can be completed in just a few hours. It is directed by a machine called a thermocycler, which is programmed to alter the temperature of the reaction every few minutes to allow DNA denaturing and synthesis.

Last updated: August 17, 2020

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

What is PCR?

  • The polymerase chain reaction (PCR) was originally developed in 1983 by the American biochemist Kary Mullis. He was awarded the Nobel Prize in Chemistry in 1993 for his pioneering work.
  • PCR is used in molecular biology to make many copies of (amplify) small sections of DNA or a gene.
  • Using PCR it is possible to generate thousands to millions of copies of a particular section of DNA from a very small amount of DNA.
  • PCR is a common tool used in medical and biological research labs. It is used in the early stages of processing DNA for sequencing, for detecting the presence or absence of a gene to help identify pathogens during infection, and when generating forensic DNA profiles from tiny samples of DNA.

How does PCR work?

  • The principles behind every PCR, whatever the sample of DNA, are the same.
  • Five core ‘ingredients’ are required to set up a PCR. We will explain exactly what each of these do as we go along. These are:
    • the DNA template to be copied
    • primers, short stretches of DNA that initiate the PCR reaction, designed to bind to either side of the section of DNA you want to copy
    • DNA nucleotide bases (also known as dNTPs). DNA bases (A, C, G and T) are the building blocks of DNA and are needed to construct the new strand of DNA
    • Taq polymerase enzyme to add in the new DNA bases
    • buffer to ensure the right conditions for the reaction.
  • PCR involves a process of heating and cooling called thermal cycling which is carried out by machine.
  • There are three main stages:
    1. Denaturing – when the double-stranded template DNA is heated to separate it into two single strands.
    2. Annealing – when the temperature is lowered to enable the DNA primers to attach to the template DNA.
    3. Extending – when the temperature is raised and the new strand of DNA is made by the Taq polymerase enzyme.
  • These three stages are repeated 20-40 times, doubling the number of DNA copies each time.
  • A complete PCR reaction can be performed in a few hours, or even less than an hour with certain high-speed machines.
  • After PCR has been completed, a method called electrophoresis can be used to check the quantity and size of the DNA fragments produced.

What is the purpose of PCR

Illustration showing the main steps in the polymerase chain reaction (PCR).
Image credit: Genome Research Limited

What happens at each stage of PCR?

Denaturing stage

  • During this stage the cocktail containing the template DNA and all the other core ingredients is heated to 94-95⁰C.
  • The high temperature causes the hydrogen bonds between the bases in two strands of template DNA to break and the two strands to separate.
  • This results in two single strands of DNA, which will act as templates for the production of the new strands of DNA.
  • It is important that the temperature is maintained at this stage for long enough to ensure that the DNA strands have separated completely.
  • This usually takes between 15-30 seconds.

Annealing stage

  • During this stage the reaction is cooled to 50-65⁰C. This enables the primers to attach to a specific location on the single-stranded template DNA by way of hydrogen bonding (the exact temperature depends on the melting temperature of the primers you are using).
  • Primers are single strands of DNA or RNA sequence that are around 20 to 30 bases in length.
  • The primers are designed to be complementary in sequence to short sections of DNA on each end of the sequence to be copied.
  • Primers serve as the starting point for DNA synthesis. The polymerase enzyme can only add DNA bases to a double strand of DNA. Only once the primer has bound can the polymerase enzyme attach and start making the new complementary strand of DNA from the loose DNA bases.
  • The two separated strands of DNA are complementary and run in opposite directions (from one end – the 5’ end – to the other – the 3’ end); as a result, there are two primers – a forward primer and a reverse primer.
  • This step usually takes about 10-30 seconds.

Extending stage

  • During this final step, the heat is increased to 72⁰C to enable the new DNA to be made by a special Taq DNA polymerase enzyme which adds DNA bases.
  • Taq DNA polymerase is an enzyme taken from the heat-loving bacteria Thermus aquaticus.
    • This bacteria normally lives in hot springs so can tolerate temperatures above 80⁰C.
    • The bacteria’s DNA polymerase is very stable at high temperatures, which means it can withstand the temperatures needed to break the strands of DNA apart in the denaturing stage of PCR.
    • DNA polymerase from most other organisms would not be able to withstand these high temperatures, for example, human polymerase works ideally at 37˚C (body temperature).
  • 72⁰C is the optimum temperature for the Taq polymerase to build the complementary strand. It attaches to the primer and then adds DNA bases to the single strand one-by-one in the 5’ to 3’ direction.
  • The result is a brand new strand of DNA and a double-stranded molecule of DNA.
  • The duration of this step depends on the length of DNA sequence being amplified but usually takes around one minute to copy 1,000 DNA bases (1Kb).
  • These three processes of thermal cycling are repeated 20-40 times to produce lots of copies of the DNA sequence of interest.
  • The new fragments of DNA that are made during PCR also serve as templates to which the DNA polymerase enzyme can attach and start making DNA.
  • The result is a huge number of copies of the specific DNA segment produced in a relatively short period of time.

What is the purpose of PCR

Illustration showing how the polymerase chain reaction (PCR) produces lots of copies of DNA.
Image credit: Genome Research Limited

This page was last updated on 2021-07-21

What is the purpose of PCR quizlet?

PCR (polymerase chain reaction) is a technique used to amplify or make multiple copies of a specific gene or segment of a DNA sample. The process involves temperature dependent reactions.

What is the purpose of PCR and what are the three steps involved?

PCR is based on three simple steps required for any DNA synthesis reaction: (1) denaturation of the template into single strands; (2) annealing of primers to each original strand for new strand synthesis; and (3) extension of the new DNA strands from the primers.

What 3 things is PCR used to do?

Polymerase chain reaction (PCR) is a technique used to exponentially amplify a specific target DNA sequence, allowing for the isolation, sequencing, or cloning of a single sequence among many.

What is PCR and what is the benefit of using it?

Polymerase chain reaction (PCR) is a chemical process that rapidly and exponentially amplifies target nucleic acid. This process can produce millions to billions of copies of a particular segment of DNA or RNA.