What are two main reasons endurance athletes need to increase their daily carbohydrate intake?

1. Thomas D.T., Erdman K.A., Burke L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016;116:501–528. doi: 10.1016/j.jand.2015.12.006. [PubMed] [CrossRef] [Google Scholar]

2. Maughan R.J., Burke L.M., Dvorak J., Larson-Meyer D.E., Peeling P., Phillips S.M., Rawson E.S., Walsh N.P., Garthe I., Geyer H., et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018;52:439–455. doi: 10.1136/bjsports-2018-099027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Noakes T.D. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand. J. Med. Sci. Sports. 2000;10:123–145. doi: 10.1034/j.1600-0838.2000.010003123.x. [PubMed] [CrossRef] [Google Scholar]

4. Jeukendrup A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011;29(Suppl. 1):S91–S99. doi: 10.1080/02640414.2011.610348. [PubMed] [CrossRef] [Google Scholar]

5. Smith J.W., Pascoe D.D., Passe D.H., Ruby B.C., Stewart L.K., Baker L.B., Zachwieja J.J. Curvilinear dose-response relationship of carbohydrate (0-120 gh (-1)) and performance. Med. Sci. Sports Exerc. 2013;45:336–341. doi: 10.1249/MSS.0b013e31827205d1. [PubMed] [CrossRef] [Google Scholar]

6. Cermak N.M., van Loon L.J.C. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–1155. doi: 10.1007/s40279-013-0079-0. [PubMed] [CrossRef] [Google Scholar]

7. Mata-Ordóñez F., Grimaldi-Puyana M., Sánchez-Oliver A.J. Reposición del glucógeno muscular en la recuperación del deportista. Sport TK Rev. Euroam. Cienc. Deporte. 2019;8:57–66. doi: 10.6018/sportk.362071. [CrossRef] [Google Scholar]

8. Hawley J.A. Adaptations of Skeletal Muscle to Prolonged, Intense Endurance Training. Clin. Exp. Pharmacol. Physiol. 2002;29:218–222. doi: 10.1046/j.1440-1681.2002.03623.x. [PubMed] [CrossRef] [Google Scholar]

9. Domínguez R., Mata-Ordoñez F., Sanchez-Oliver A.J. Nutrición Deportiva Aplicada: Guía Para Optimizar el Rendimiento. ICB Editores; Málaga, Spain: 2017. [Google Scholar]

10. Jeukendrup A.E. Periodized Nutrition for Athletes. Sports Med. 2017;47:51–63. doi: 10.1007/s40279-017-0694-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Coffey V.G., Hawley J.A. The molecular bases of training adaptation. Sports Med. 2007;37:737–763. doi: 10.2165/00007256-200737090-00001. [PubMed] [CrossRef] [Google Scholar]

12. Baar K., McGee S. Optimizing training adaptations by manipulating glycogen. Eur. J. Sport Sci. 2008;8:97–106. doi: 10.1080/17461390801919094. [CrossRef] [Google Scholar]

13. Hearris M.A., Hammond K.M., Fell J.M., Morton J.P. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients. 2018;10:298. doi: 10.3390/nu10030298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Impey S.G., Hearris M.A., Hammond K.M., Bartlett J.D., Louis J., Close G.L., Morton J.P. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Med. 2018;48:1031–1048. doi: 10.1007/s40279-018-0867-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Lee C.-H., Inoki K., Guan K.-L. mTOR pathway as a target in tissue hypertrophy. Annu. Rev. Pharmacol. Toxicol. 2007;47:443–467. doi: 10.1146/annurev.pharmtox.47.120505.105359. [PubMed] [CrossRef] [Google Scholar]

16. Knuiman P., Hopman M.T.E., Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr. Metab. (Lond.) 2015;12:59. doi: 10.1186/s12986-015-0055-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Smiles W.J., Hawley J.A., Camera D.M. Effects of skeletal muscle energy availability on protein turnover responses to exercise. J. Exp. Biol. 2016;219:214–225. doi: 10.1242/jeb.125104. [PubMed] [CrossRef] [Google Scholar]

18. Churchley E.G., Coffey V.G., Pedersen D.J., Shield A., Carey K.A., Cameron-Smith D., Hawley J.A. Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J. Appl. Physiol. 2007;102:1604–1611. doi: 10.1152/japplphysiol.01260.2006. [PubMed] [CrossRef] [Google Scholar]

19. Creer A., Gallagher P., Slivka D., Jemiolo B., Fink W., Trappe S. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J. Appl. Physiol. 2005;99:950–956. doi: 10.1152/japplphysiol.00110.2005. [PubMed] [CrossRef] [Google Scholar]

20. Blomstrand E., Saltin B. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. Pt 1J. Physiol. (Lond.) 1999;514:293–302. doi: 10.1111/j.1469-7793.1999.293af.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Lemon P.W., Tarnopolsky M.A., MacDougall J.D., Atkinson S.A. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J. Appl. Physiol. 1992;73:767–775. doi: 10.1152/jappl.1992.73.2.767. [PubMed] [CrossRef] [Google Scholar]

22. Chow L.S., Albright R.C., Bigelow M.L., Toffolo G., Cobelli C., Nair K.S. Mechanism of insulin’s anabolic effect on muscle: Measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am. J. Physiol. Endocrinol. Metab. 2006;291:E729–E736. doi: 10.1152/ajpendo.00003.2006. [PubMed] [CrossRef] [Google Scholar]

23. Rabassa-Blanco J., Palma-Linares I. Efectos de los suplementos de proteína y aminoácidos de cadena ramificada en entrenamiento de fuerza: Revisión bibliográfica. Rev. Española Nutr. Hum. Dietética. 2017;21:55–73. doi: 10.14306/renhyd.21.1.220. [CrossRef] [Google Scholar]

24. Aragon A.A., Schoenfeld B.J. Nutrient timing revisited: Is there a post-exercise anabolic window? J. Int. Soc. Sports Nutr. 2013;10:5. doi: 10.1186/1550-2783-10-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Churchward-Venne T.A., Burd N.A., Phillips S.M. Nutritional regulation of muscle protein synthesis with resistance exercise: Strategies to enhance anabolism. Nutr. Metab. (Lond.) 2012;9:40. doi: 10.1186/1743-7075-9-40. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Greenhaff P.L., Karagounis L.G., Peirce N., Simpson E.J., Hazell M., Layfield R., Wackerhage H., Smith K., Atherton P., Selby A., et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 2008;295:E595–E604. doi: 10.1152/ajpendo.90411.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Karlsson J., Saltin B. Diet, muscle glycogen, and endurance performance. J. Appl. Physiol. 1971;31:203–206. doi: 10.1152/jappl.1971.31.2.203. [PubMed] [CrossRef] [Google Scholar]

28. Ahlborg B., Bergstrom J., Brohult J., Ekelund L.G., Hultman E., Maschio G. Human muscle glycogen content and capacity for prolonged exercise after different diets. Forsvarsmedicin. 1967;3:85–99. [Google Scholar]

29. Stellingwerff T., Spriet L.L., Watt M.J., Kimber N.E., Hargreaves M., Hawley J.A., Burke L.M. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am. J. Physiol. Endocrinol. Metab. 2006;290:E380–E388. doi: 10.1152/ajpendo.00268.2005. [PubMed] [CrossRef] [Google Scholar]

30. Hargreaves M., Hawley J.A., Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: Effects on metabolism and performance. J. Sports Sci. 2004;22:31–38. doi: 10.1080/0264041031000140536. [PubMed] [CrossRef] [Google Scholar]

31. Bartlett J.D., Hawley J.A., Morton J.P. Carbohydrate availability and exercise training adaptation: Too much of a good thing? Eur. J. Sport Sci. 2015;15:3–12. doi: 10.1080/17461391.2014.920926. [PubMed] [CrossRef] [Google Scholar]

32. Impey S.G., Hammond K.M., Shepherd S.O., Sharples A.P., Stewart C., Limb M., Smith K., Philp A., Jeromson S., Hamilton D.L., et al. Fuel for the work required: A practical approach to amalgamating train-low paradigms for endurance athletes. Physiol. Rep. 2016;4:e12803. doi: 10.14814/phy2.12803. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Burke L.M. Fueling strategies to optimize performance: Training high or training low? Scand. J. Med. Sci. Sports. 2010;20(Suppl. 2):48–58. doi: 10.1111/j.1600-0838.2010.01185.x. [PubMed] [CrossRef] [Google Scholar]

34. Lucía A., Sánchez O., Carvajal A., Chicharro J.L. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br. J. Sports Med. 1999;33:178–185. doi: 10.1136/bjsm.33.3.178. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Lira V.A., Benton C.R., Yan Z., Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2010;299:E145–E161. doi: 10.1152/ajpendo.00755.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Lantier L., Fentz J., Mounier R., Leclerc J., Treebak J.T., Pehmøller C., Sanz N., Sakakibara I., Saint-Amand E., Rimbaud S., et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 2014;28:3211–3224. doi: 10.1096/fj.14-250449. [PubMed] [CrossRef] [Google Scholar]

37. Close G.L., Hamilton D.L., Philp A., Burke L.M., Morton J.P. New strategies in sport nutrition to increase exercise performance. Free Radic. Biol. Med. 2016;98:144–158. doi: 10.1016/j.freeradbiomed.2016.01.016. [PubMed] [CrossRef] [Google Scholar]

38. Marquet L.-A., Brisswalter J., Louis J., Tiollier E., Burke L.M., Hawley J.A., Hausswirth C. Enhanced Endurance Performance by Periodization of Carbohydrate Intake: “Sleep Low” Strategy. Med. Sci. Sports Exerc. 2016;48:663–672. doi: 10.1249/MSS.0000000000000823. [PubMed] [CrossRef] [Google Scholar]

39. Noakes T., Volek J.S., Phinney S.D. Low-carbohydrate diets for athletes: What evidence? Br. J. Sports Med. 2014;48:1077–1078. doi: 10.1136/bjsports-2014-093824. [PubMed] [CrossRef] [Google Scholar]

40. Burke L.M., Hawley J.A., Wong S.H.S., Jeukendrup A.E. Carbohydrates for training and competition. J. Sports Sci. 2011;29(Suppl. 1):S17–S27. doi: 10.1080/02640414.2011.585473. [PubMed] [CrossRef] [Google Scholar]

41. Pilegaard H., Osada T., Andersen L.T., Helge J.W., Saltin B., Neufer P.D. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metab. Clin. Exp. 2005;54:1048–1055. doi: 10.1016/j.metabol.2005.03.008. [PubMed] [CrossRef] [Google Scholar]

42. Pilegaard H., Ordway G.A., Saltin B., Neufer P.D. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am. J. Physiol. Endocrinol. Metab. 2000;279:E806–E814. doi: 10.1152/ajpendo.2000.279.4.E806. [PubMed] [CrossRef] [Google Scholar]

43. Lane S.C., Camera D.M., Lassiter D.G., Areta J.L., Bird S.R., Yeo W.K., Jeacocke N.A., Krook A., Zierath J.R., Burke L.M., et al. Effects of sleeping with reduced carbohydrate availability on acute training responses. J. Appl. Physiol. 2015;119:643–655. doi: 10.1152/japplphysiol.00857.2014. [PubMed] [CrossRef] [Google Scholar]

44. Morton J.P., Croft L., Bartlett J.D., Maclaren D.P.M., Reilly T., Evans L., McArdle A., Drust B. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J. Appl. Physiol. 2009;106:1513–1521. doi: 10.1152/japplphysiol.00003.2009. [PubMed] [CrossRef] [Google Scholar]

45. Van Proeyen K., Szlufcik K., Nielens H., Ramaekers M., Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J. Appl. Physiol. 2011;110:236–245. doi: 10.1152/japplphysiol.00907.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Yeo W.K., Paton C.D., Garnham A.P., Burke L.M., Carey A.L., Hawley J.A. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J. Appl. Physiol. 2008;105:1462–1470. doi: 10.1152/japplphysiol.90882.2008. [PubMed] [CrossRef] [Google Scholar]

47. Marquet L.-A., Hausswirth C., Molle O., Hawley J.A., Burke L.M., Tiollier E., Brisswalter J. Periodization of Carbohydrate Intake: Short-Term Effect on Performance. Nutrients. 2016;8:755. doi: 10.3390/nu8120755. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Cochran A.J., Myslik F., MacInnis M.J., Percival M.E., Bishop D., Tarnopolsky M.A., Gibala M.J. Manipulating Carbohydrate Availability Between Twice-Daily Sessions of High-Intensity Interval Training Over 2 Weeks Improves Time-Trial Performance. Int. J. Sport Nutr. Exerc. Metab. 2015;25:463–470. doi: 10.1123/ijsnem.2014-0263. [PubMed] [CrossRef] [Google Scholar]

49. Hansen A.K., Fischer C.P., Plomgaard P., Andersen J.L., Saltin B., Pedersen B.K. Skeletal muscle adaptation: Training twice every second day vs. training once daily. J. Appl. Physiol. 2005;98:93–99. doi: 10.1152/japplphysiol.00163.2004. [PubMed] [CrossRef] [Google Scholar]

50. Burke L.M., Ross M.L., Garvican-Lewis L.A., Welvaert M., Heikura I.A., Forbes S.G., Mirtschin J.G., Cato L.E., Strobel N., Sharma A.P., et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. (Lond.) 2017;595:2785–2807. doi: 10.1113/JP273230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Gejl K.D., Thams L.B., Hansen M., Rokkedal-Lausch T., Plomgaard P., Nybo L., Larsen F.J., Cardinale D.A., Jensen K., Holmberg H.-C., et al. No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes. Med. Sci. Sports Exerc. 2017;49:2486–2497. doi: 10.1249/MSS.0000000000001377. [PubMed] [CrossRef] [Google Scholar]

52. Hulston C.J., Venables M.C., Mann C.H., Martin C., Philp A., Baar K., Jeukendrup A.E. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med. Sci. Sports Exerc. 2010;42:2046–2055. doi: 10.1249/MSS.0b013e3181dd5070. [PubMed] [CrossRef] [Google Scholar]

53. Louis J., Marquet L.-A., Tiollier E., Bermon S., Hausswirth C., Brisswalter J. The impact of sleeping with reduced glycogen stores on immunity and sleep in triathletes. Eur. J. Appl. Physiol. 2016;116:1941–1954. doi: 10.1007/s00421-016-3446-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Lane S.C., Bird S.R., Burke L.M., Hawley J.A. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl. Physiol. Nutr. Metab. 2013;38:134–139. doi: 10.1139/apnm-2012-0300. [PubMed] [CrossRef] [Google Scholar]

55. Kizzi J., Sum A., Houston F.E., Hayes L.D. Influence of a caffeine mouth rinse on sprint cycling following glycogen depletion. Eur. J. Sport Sci. 2016;16:1087–1094. doi: 10.1080/17461391.2016.1165739. [PubMed] [CrossRef] [Google Scholar]

56. Kerksick C.M., Wilborn C.D., Roberts M.D., Smith-Ryan A., Kleiner S.M., Jäger R., Collins R., Cooke M., Davis J.N., Galvan E., et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018;15:38. [PMC free article] [PubMed] [Google Scholar]

57. Nunes C.L., Matias C.N., Santos D.A., Morgado J.P., Monteiro C.P., Sousa M., Minderico C.S., Rocha P.M., St-Onge M.-P., Sardinha L.B., et al. Characterization and Comparison of Nutritional Intake between Preparatory and Competitive Phase of Highly Trained Athletes. Medicina (Kaunas) 2018;54:41. doi: 10.3390/medicina54030041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Jeukendrup A.E., Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann. Nutr. Metab. 2010;57(Suppl. 2):18–25. doi: 10.1159/000322698. [PubMed] [CrossRef] [Google Scholar]

59. Cholewa J.M., Newmire D.E., Zanchi N.E. Carbohydrate restriction: Friend or foe of resistance-based exercise performance? Nutrition. 2019;60:136–146. doi: 10.1016/j.nut.2018.09.026. [PubMed] [CrossRef] [Google Scholar]

60. Getzin A.R., Milner C., Harkins M. Fueling the Triathlete: Evidence-Based Practical Advice for Athletes of All Levels. Curr. Sports Med. Rep. 2017;16:240–246. doi: 10.1249/JSR.0000000000000386. [PubMed] [CrossRef] [Google Scholar]

61. Hawley J.A., Schabort E.J., Noakes T.D., Dennis S.C. Carbohydrate-loading and exercise performance. An update. Sports Med. 1997;24:73–81. doi: 10.2165/00007256-199724020-00001. [PubMed] [CrossRef] [Google Scholar]

62. Stellingwerff T., Cox G.R. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl. Physiol. Nutr. Metab. 2014;39:998–1011. doi: 10.1139/apnm-2014-0027. [PubMed] [CrossRef] [Google Scholar]

63. Jeukendrup A.E. Carbohydrate intake during exercise and performance. Nutrition. 2004;20:669–677. doi: 10.1016/j.nut.2004.04.017. [PubMed] [CrossRef] [Google Scholar]

64. Jeukendrup A.E. Carbohydrate feeding during exercise. Eur. J. Sport Sci. 2008;8:77–86. doi: 10.1080/17461390801918971. [CrossRef] [Google Scholar]

65. Burelle Y., Lamoureux M.-C., Péronnet F., Massicotte D., Lavoie C. Comparison of exogenous glucose, fructose and galactose oxidation during exercise using 13C-labelling. Br. J. Nutr. 2006;96:56–61. doi: 10.1079/BJN20061799. [PubMed] [CrossRef] [Google Scholar]

66. De Oliveira E.P., Burini R.C., Jeukendrup A. Gastrointestinal complaints during exercise: Prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(Suppl. 1):S79–S85. doi: 10.1007/s40279-014-0153-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Jeukendrup A.E. Carbohydrate and exercise performance: The role of multiple transportable carbohydrates. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:452–457. doi: 10.1097/MCO.0b013e328339de9f. [PubMed] [CrossRef] [Google Scholar]

68. Jentjens R.L.P.G., Shaw C., Birtles T., Waring R.H., Harding L.K., Jeukendrup A.E. Oxidation of combined ingestion of glucose and sucrose during exercise. Metab. Clin. Exp. 2005;54:610–618. doi: 10.1016/j.metabol.2004.12.004. [PubMed] [CrossRef] [Google Scholar]

69. Currell K., Urch J., Cerri E., Jentjens R.L.P., Blannin A.K., Jeukendrup A.E. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Appl. Physiol. Nutr. Metab. 2008;33:1067–1072. doi: 10.1139/H08-084. [PubMed] [CrossRef] [Google Scholar]

70. Carter J.M., Jeukendrup A.E., Jones D.A. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med. Sci. Sports Exerc. 2004;36:2107–2111. doi: 10.1249/01.MSS.0000147585.65709.6F. [PubMed] [CrossRef] [Google Scholar]

71. Chambers E.S., Bridge M.W., Jones D.A. Carbohydrate sensing in the human mouth: Effects on exercise performance and brain activity. J. Physiol. (Lond.) 2009;587:1779–1794. doi: 10.1113/jphysiol.2008.164285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. MacDougall J.D., Ray S., Sale D.G., McCartney N., Lee P., Garner S. Muscle substrate utilization and lactate production. Can. J. Appl. Physiol. 1999;24:209–215. doi: 10.1139/h99-017. [PubMed] [CrossRef] [Google Scholar]

73. Koopman R., Manders R.J.F., Jonkers R.A.M., Hul G.B.J., Kuipers H., van Loon L.J.C. Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur. J. Appl. Physiol. 2006;96:525–534. doi: 10.1007/s00421-005-0118-0. [PubMed] [CrossRef] [Google Scholar]

74. Slater G., Phillips S.M. Nutrition guidelines for strength sports: Sprinting, weightlifting, throwing events, and bodybuilding. J. Sports Sci. 2011;29(Suppl. 1):S67–S77. doi: 10.1080/02640414.2011.574722. [PubMed] [CrossRef] [Google Scholar]

75. Haff G.G., Koch A.J., Potteiger J.A., Kuphal K.E., Magee L.M., Green S.B., Jakicic J.J. Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int. J. Sport Nutr. Exerc. Metab. 2000;10:326–339. doi: 10.1123/ijsnem.10.3.326. [PubMed] [CrossRef] [Google Scholar]

76. Conley M.S., Stone M.H. Carbohydrate ingestion/supplementation or resistance exercise and training. Sports Med. 1996;21:7–17. doi: 10.2165/00007256-199621010-00002. [PubMed] [CrossRef] [Google Scholar]

77. Haff G.G., Stone M.H., Warren B.J., Keith R., Johnson R.L., Nieman D.C., Williams F.J., Kirksey K.B. The Effect of Carbohydrate Supplementation on Multiple Sessions and Bouts of Resistance Exercise. J. Strength Cond. Res. 1999;13:111. [Google Scholar]

78. Lambert C.P., Flynn M.G., Boone J.B.J., Michaud T.J., Rodriguez-Zayas J. Effects of Carbohydrate Feeding on Multiple-bout Resistance Exercise. J. Strength Cond. Res. 1991;5:192. [Google Scholar]

79. Clarke N.D., Hammond S., Kornilios E., Mundy P.D. Carbohydrate mouth rinse improves morning high-intensity exercise performance. Eur. J. Sport Sci. 2017;17:955–963. doi: 10.1080/17461391.2017.1333159. [PubMed] [CrossRef] [Google Scholar]

80. Dunkin J.E., Phillips S.M. The Effect of a Carbohydrate Mouth Rinse on Upper-Body Muscular Strength and Endurance. J. Strength Cond. Res. 2017;31:1948–1953. doi: 10.1519/JSC.0000000000001668. [PubMed] [CrossRef] [Google Scholar]

81. Burke L.M., van Loon L.J.C., Hawley J.A. Postexercise muscle glycogen resynthesis in humans. J. Appl. Physiol. 2017;122:1055–1067. doi: 10.1152/japplphysiol.00860.2016. [PubMed] [CrossRef] [Google Scholar]

82. Hargreaves M., Richter E.A. Regulation of skeletal muscle glycogenolysis during exercise. Can. J. Sport Sci. 1988;13:197–203. [PubMed] [Google Scholar]

83. Prats C., Helge J.W., Nordby P., Qvortrup K., Ploug T., Dela F., Wojtaszewski J.F.P. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization. J. Biol. Chem. 2009;284:15692–15700. doi: 10.1074/jbc.M900845200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Ivy J.L., Katz A.L., Cutler C.L., Sherman W.M., Coyle E.F. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. J. Appl. Physiol. 1988;64:1480–1485. doi: 10.1152/jappl.1988.64.4.1480. [PubMed] [CrossRef] [Google Scholar]

85. Gonzalez J.T., Fuchs C.J., Betts J.A., van Loon L.J.C. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am. J. Physiol. Endocrinol. Metab. 2016;311:E543–E553. doi: 10.1152/ajpendo.00232.2016. [PubMed] [CrossRef] [Google Scholar]

86. Pedersen D.J., Lessard S.J., Coffey V.G., Churchley E.G., Wootton A.M., Ng T., Watt M.J., Hawley J.A. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J. Appl. Physiol. 2008;105:7–13. doi: 10.1152/japplphysiol.01121.2007. [PubMed] [CrossRef] [Google Scholar]