What type of enzyme is glucocerebrosidase?

Treatment
The main goal is to improve the patients’ quality of life by allowing them to perform their normal daily activities, such as working without feeling the excess fatigue or walking normally without experiencing joint pain. Other goals include preventing the severity of complications, such as reduced bone density to thinning, weak bones (osteoporosis) and easy fractures or shortness of breath from the reduced lung function. Normalizing the growth for a child for them to reach a normal height can also be a target within a couple of years of treatment and achieving a normal onset of puberty.

Treatment is individualized for each patient depending on the type of Gaucher disease. Type 1 Gaucher disease is considered treatable and mild, because it does not involve neurological symptoms since the brain is not affected. Type 2 is not considered to be treatable at this point due to the quick and irreversible brain damage in the infantile years. Type 3 still involves neurological damage, but these symptoms progress more slowly than in type 2. There are current FDA-approved drug therapy options that include enzyme replacement therapy (ERT) and substrate reduction therapy (SRT).

Enzyme replacement therapy (ERT) has proven effective for individuals with Gaucher disease type 1. In studies of ERT, anemia and low platelet counts have improved, enlargement of the liver and spleen have been greatly reduced, and skeletal findings have improved. These systemic manifestations also improve in individuals with Gaucher disease types 2 and 3 who receive ERT. However, ERT has not been effective in reducing or reversing certain neurological symptoms associated with Gaucher disease types 2 and 3.

ERT is given every 2 weeks via intravenous (IV) infusions either at infusion centers, National Gaucher Disease Treatment Center, or at home by self-administration, assistance from a family member/friend or home care nurse. The three current FDA-approved ERT drugs include imiglucerase (Cerezyme), velaglucerase alfa (VPRIV), and taliglucerase (Elelyso).

The orphan drug alglucerase injection (Ceredase), which is a placenta-derived enzyme, was approved by the U.S. Food and Drug Administration (FDA) in 1991 for the treatment of Gaucher disease type 1. It was the first ERT proven effective for the treatment of Gaucher disease type 1.

The synthetic form of this drug, imiglucerase (Cerezyme), was approved in 1994. Recombinant DNA technology, or genetic engineering, is used to produce Cerezyme. This was an important step in overcoming limitations of the availability of Ceredase, which is derived from human placentas. Therefore, Ceredase has been withdrawn from the market due to similar drugs being made without having bioavailability issues from human derived cells and the transfer of diseases. Cerezyme, manufactured by Genzyme, replaces the human lysosomal enzyme glucocerebrosidase that is lacking in individuals with Gaucher disease.

Another FDA approved preparation of glucocerebrosidase called Velaglucerase alfa (trade name VPRIV) produced in a continuous human cell line is available from Shire.

Elelyso (also known as Uplyso or taliglucerase alfa) by Pfizer Inc., under license from Protalix BioTherapeutics Inc., was approved by the FDA in 2012 as a treatment for Gaucher disease type 1. Elelyso is an injected long-term enzyme replacement therapy that should be administered by a health care professional every other week. It uses genetically engineered carrot cells to provide replacement glucocerebrosidase.

Substrate reduction therapy may also be utilized in specific patient populations. These work differently than the ERT’s by blocking the production of glucocerebroside (fatty substance) by inhibiting the enzyme glucosylceramide synthase. These come in tablets/capsules and are taken daily. SRT’s are not to be used in children and teenagers, pregnant or breastfeeding women, elderly patients, and people with severe kidney or liver disease. The two current FDA-approved drugs include eliglustat (Cerdelga) and imiglustat (Zavesca).

In 2014, Cerdelga (eliglustat), manufactured by Genzyme, was approved by the FDA for the long-term treatment of adult patients with the Gaucher disease type 1.

In 2003, the U.S. Food and Drug Administration approved Zavesca, an oral therapy, for the treatment of adult patients with mild to moderate Gaucher disease type 1 for whom enzyme replacement therapy is not a treatment option (as a result of allergy, hypersensitivity, etc.).

Genetic counseling is recommended for affected individuals and their families. Other treatment is symptomatic and supportive.

There is current research at the Medical Genetics Branch of the National Human Genome Research Institute about a possible link or association between Gaucher disease and Parkinson disease. Studies have shown that affected individuals (with two disease-causing GBA gene mutations) and carriers (with a single GBA gene mutation) both have an increased risk of Parkinson disease.

Individuals with Gaucher disease are at increased risk for multiple myeloma, and as adults should be monitored carefully.

Previously, a diagnosis of Gaucher disease was often made by the presence of Gaucher cells in a bone marrow aspirate or when a patient presented with an unexplained massive splenomegaly and was treated with splenectomy. However, these diagnostic methods were not accurate because many storage cells, so-called pseudo-Gaucher cells, may be confused with Gaucher cells on the marrow examination. Nevertheless, a bone marrow examination may still be needed in patients where the splenomegaly does not regress on treatment, or if the patient develops enlarged lymph nodes or B symptoms that suggest development of a lymphoma.1

What is the glucocerebrosidase enzyme activity test?

Measurement of glucocerebrosidase enzyme activity in leukocytes or skin fibroblasts on a skin biopsy is considered the ‘gold standard’ for diagnosing Gaucher disease.1,3 Dried blood spots are used as a screening assay for glucocerebrosidase enzyme activity.4 A test using approximately 5 mL of EDTA or heparinised blood is all that is necessary to confirm a diagnosis of Gaucher disease as this allows direct measurement of glucocerebrosidase activity in leukocytes.5,6 If patients have leukopaenia, cultivated skin fibroblasts from a skin biopsy can be assayed instead.5 The determination of Gaucher disease must be made by specialised laboratories with particular experience in the measurement of glucocerebrosidase activity and its interpretation.5-9 In patients with Gaucher disease, glucocerebrosidase activity levels are approximately 10‒30% of normal.8,9

Residual glucocerebrosidase enzyme activity has been shown to significantly correlate with age, chitotriosidase enzyme activity, spleen size and greater disease severity in patients with Gaucher disease.10 Yet, measuring glucocerebrosidase enzyme activity does not distinguish between patients with Gaucher disease who are heterozygote carriers of mutations in the GBA1 gene and individuals who do not have Gaucher disease. Moreover, this diagnostic blood test does not provide histological information on the bone, liver or spleen for diagnosis.1 However, a statistically significant relationship between the residual enzyme activity of glucocerebrosidase and bone involvement has been previously noted.10

Clinical experience in diagnosing Gaucher disease

Results were reported from the biochemical diagnosis of blood samples taken from 5128 patients with suspected Gaucher disease from the Biochemical Genetics laboratory in Egypt. For each patient, 5 mL of whole blood were collected by venous puncture into EDTA tubes. Plasma was obtained for chitotriosidase assay and leukocytes were separated to determine the activity of glucocerebrosidase using synthetic substrate. In all cases, measurement of glucocerebrosidase activity was conducted in parallel with the assessment of chitotriosidase in peripheral leukocytes. In healthy unaffected individuals without Gaucher disease, normal enzyme activity was reported as 1‒5 µmol/g prot/h for glucocerebrosidase and 4‒80 µmol/L/h for chitotriosidase.11

Of the 5128 suspected cases of Gaucher disease, 882 patients (17%) were diagnosed with the disease. Most of these patients (81.5% [719/882]) showed positive parental consanguinity; the male to female ratio was 1.6 to 1. The age range for diagnosis was from 3 months to 45 years, with 97.5% of patients diagnosed between the ages of 1.7 to 8 years. A decrease in the activity of glucocerebrosidase was evident in 99% of patients diagnosed with Gaucher disease. The mean glucocerebrosidase activity value in these patients represented 0.3 µmol/g prot/h, which was 30% of the low normal value. In these patients, chitotriosidase activity levels were increased (mean [standard deviation (SD)] 6243 [20,211] µmol/L/h). However, in nine patients, chitotriosidase levels were zero, and glucocerebrosidase activity was 45% of the low normal value.11

In 103 cases of suspected Gaucher disease, an elevation in mean (SD) chitotriosidase activity (131.8 [24.0] µmol/L/h) was noted; however, mean glucocerebrosidase (3.2 µmol/g prot/h) levels were normal.11

  1. Gaucher P. De l’epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucmie; 1882.

    Google Scholar 

  2. Oberling C. Rev franc de Ped III; 1927.

    Google Scholar 

  3. Brady RO, Kanfer J, Shapiro D. The metabolism of Glucocerebrosides. I. Purification and properties of a Glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem. 1965;240:39–43.

    CAS  PubMed  Google Scholar 

  4. Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Gaucher disease: Progress and ongoing challenges. Mol Genet Metab. 2017;120(1–2):8–21.

    Article  CAS  PubMed  Google Scholar 

  5. Ginns EI, Choudary PV, Tsuji S, Martin B, Stubblefield B, Sawyer J, et al. Gene mapping and leader polypeptide sequence of human glucocerebrosidase: implications for Gaucher disease. Proc Natl Acad Sci U S A. 1985;82(20):7101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reczek D, Schwake M, Schroder J, Hughes H, Blanz J, Jin X, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell. 2007;131(4):770–83.

    Article  CAS  PubMed  Google Scholar 

  7. Tamargo RJ, Velayati A, Goldin E, Sidransky E. The role of saposin C in Gaucher disease. Mol Genet Metab. 2012;106(3):257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reiner O, Wigderson M, Horowitz M. Structural analysis of the human glucocerebrosidase genes. DNA. 1988;7(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  9. Winfield SL, Tayebi N, Martin BM, Ginns EI, Sidransky E. Identification of three additional genes contiguous to the glucocerebrosidase locus on chromosome 1q21: implications for Gaucher disease. Genome Res. 1997;7:1020–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. Human gene mutation database (HGMD): 2003 update. Hum Mutat. 2003;21(6):577–81.

    Article  CAS  PubMed  Google Scholar 

  11. Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat. 2008;29(5):567–83.

    Article  CAS  PubMed  Google Scholar 

  12. Tayebi N, Stubblefield BK, Park JK, Orvisky E, Walker JM, LaMarca ME, et al. Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. Am J Hum Genet. 2003;72(3):519–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parkin JL, Brunning RD. Pathology of the Gaucher cell. Prog Clin Biol Res. 1982;95:151–75.

    CAS  PubMed  Google Scholar 

  14. Taddei TH, Kacena KA, Yang M, Yang R, Malhotra A, Boxer M, et al. The underrecognized progressive nature of N370S Gaucher disease and assessment of cancer risk in 403 patients. Am J Hematol. 2009;84(4):208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gupta N, Oppenheim IM, Kauvar EF, Tayebi N, Sidransky E. Type 2 Gaucher disease: phenotypic variation and genotypic heterogeneity. Blood Cells Mol Dis. 2011;46(1):75–84.

    Article  CAS  PubMed  Google Scholar 

  16. Weiss K, Gonzalez A, Lopez G, Pedoeim L, Groden C, Sidransky E. The clinical management of type 2 Gaucher disease. Mol Genet Metab. 2015;114(2):110–22.

    Article  CAS  PubMed  Google Scholar 

  17. Benko W, Ries M, Wiggs EA, Brady RO, Schiffmann R, Fitzgibbon EJ. The saccadic and neurological deficits in type 3 Gaucher disease. PLoS One. 2011;6(7):e22410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, et al. Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 1991;324(21):1464–70.

    Article  CAS  PubMed  Google Scholar 

  19. Mistry PK, Lukina E, Ben Turkia H, Amato D, Baris H, Dasouki M, et al. Effect of oral eliglustat on splenomegaly in patients with Gaucher disease type 1: the ENGAGE randomized clinical trial. Jama. 2015;313(7):695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gegg ME, Sweet L, Wang BH, Shihabuddin LS, Sardi SP, Schapira AH. No evidence for substrate accumulation in Parkinson brains with GBA mutations. Mov Disord. 2015;30(8):1085–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai E, et al. Occurrence of Parkinson's syndrome in type I Gaucher disease. QJM. 1996;89(9):691–4.

    Article  CAS  PubMed  Google Scholar 

  22. Tayebi N, Callahan M, Madike V, Stubblefield BK, Orvisky E, Krasnewich D, et al. Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol Genet Metab. 2001;73(4):313–21.

    Article  CAS  PubMed  Google Scholar 

  23. Tayebi N, Walker J, Stubblefield B, Orvisky E, LaMarca ME, Wong K, et al. Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab. 2003;79(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  24. Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers. J Med Genet. 2004;41(12):937–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab. 2004;81(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  26. Aharon-Peretz JR, Gershoni-Baruch JR. Mutations in the glucocerbrosidase gene and Parkinsons disease in Asheknazi Jews. N Engl J Med. 2004;351:1972–7.

    Article  CAS  PubMed  Google Scholar 

  27. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med. 2009;361(17):1651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aflaki E, Westbroek W, Sidransky E. The complicated relationship between Gaucher disease and parkinsonism: insights from a rare disease. Neuron. 2017;93(4):737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gan-Or Z, Amshalom I, Kilarski LL, Bar-Shira A, Gana-Weisz M, Mirelman A, et al. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurobiology. 2015;84(9):880–7.

    CAS  Google Scholar 

  30. Mallett V, Ross JP, Alcalay RN, Ambalavanan A, Sidransky E, Dion PA, et al. GBA p.T369M substitution in Parkinson disease: Polymorphism or association? A meta-analysis. Neurol Genet. 2016;2(5):e104.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rosenbloom B, Balwani M, Bronstein JM, Kolodny E, Sathe S, Gwosdow AR, et al. The incidence of parkinsonism in patients with type 1 Gaucher disease: data from the ICGG Gaucher registry. Blood Cells Mol Dis. 2011;46(1):95–102.

    Article  PubMed  Google Scholar 

  32. Machaczka M, Rucinska M, Skotnicki AB, Jurczak W. Parkinson’s syndrome preceding clinical manifestation of Gaucher’s disease. Am J Hematol. 1999;61:216–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bultron G, Kacena K, Pearson D, Boxer M, Yang R, Sathe S, et al. The risk of Parkinson's disease in type 1 Gaucher disease. J Inherit Metab Dis. 2010;33(2):167–73.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alcalay RN, Dinur T, Quinn T, Sakanaka K, Levy O, Waters C, et al. Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA. 2014;71(6):752–7.

    Google Scholar 

  35. Duran R, Mencacci NE, Angeli AV, Shoai M, Deas E, Houlden H, et al. The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher’s disease. Mov Disord. 2012;28(2):232–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E, et al. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain. 2014;137:834–48.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gegg ME, Burke D, Heales SJ, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol. 2012;72(3):455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luzio JP, Hackmann Y, Dieckmann NMG, Griffiths GM. The Biogenesis of Lysosomes and Lysosome-Related Organelles. Cold Spring Harbor Perspect Biol. 2014;6:a016840.

    Article  CAS  Google Scholar 

  39. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin SU, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu G, Boot B, Locascio JJ, Jansen IE, Winder-Rhodes S, Eberly S, et al. Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson’s. Ann Neurol. 2016;80(5):674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4(11):1318–20.

    Article  CAS  PubMed  Google Scholar 

  42. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-Synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7.

    Article  CAS  PubMed  Google Scholar 

  43. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.

    Article  CAS  PubMed  Google Scholar 

  44. Bartels T, Choi JG, Selkoe DJ. A-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477(7362):107–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee HJ, Choi C, Lee SJ. Membrane-bound alpha-Synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem. 2002;2002(1):671–8.

    Article  CAS  Google Scholar 

  47. Benskey MJ, Perez R, Fredric P, Manfedsson FP. The contribution of alpha synuclein to neuronal survival and function—Implications for Parkinson’s disease. J Neurochem. 2016;137:331–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mak SK, McCormack AL, Manning-Boğ AB, Cuervo AM, DAD M. Lysosomal degradation of α-Synuclein in vivo. J Biol Chem. 2010;285:13621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kinghorn KJ, Asghari AM, Castillo-Quan JI. The emerging role of autophagic-lysosomal dysfunction in Gaucher disease and Parkinson’s disease. Neural Regen Res. 2017;12(3):380–4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gunder AL, Duran-Pacheco G, Zimmermann S, Ruf I, Moors T, Bauman K, et al. Path mediation analysis reveals GBA impacts Lewy body disease status by increasing alpha-synuclein levels. Neurobiol Dis. 2019;121:205–13.

    Article  CAS  Google Scholar 

  51. Mazulli JR, Xu Y-H, Sun Y, Knight AL, McClean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogeneic loop in synucleinopathies. Cell. 2011;146(1):37–52.

    Article  CAS  Google Scholar 

  52. Kim S, Yun SP, Lee S, Umanah GE, Bandaru VVR, Yin X, et al. GBA1 deficiency negatively affects physiological alpha-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A. 2018;115(4):798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franco R, Sanchez-Arias JA, Navano G, Lanciego JL. Glucocerebrosidase mutations and synucleinopathies. Potential role of sterylglucosides and relevance of stuying both GBA1 and GBA2 genes. Front Neuroanat. 2018;12:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Marques ARA, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, et al. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular beta-glucosidases. J Lipid Res. 2016;57(1):451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gruschus JM. Did alpha-Synuclein and glucocerebrosidase coevolve? Implications for Parkinson’s Disease. PLoS One. 2015;10(7):1–21.

    Article  CAS  Google Scholar 

  56. Dvir H, Harel M, McCarthy AA, Toker L, Silman I, Futerman AH, et al. X-ray structure of human acid-beta-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 2003;4(7):704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grace ME, Newman KM, Scheinker V, Berg-Fussman A, Grabowski GA. Analysis of human acid beta-glucosidase by site-directed mutagenesis and heterologous expression. J Biol Chem. 1994;269:2283–91.

    CAS  PubMed  Google Scholar 

  58. Zheng J, Chen L, Skinner OS, Ysselstein D, Remis J, Lansbury P, et al. β-Glucocerebrosidase modulators promote dimerization of β-Glucocerebrosidase and reveal an allosteric binding site. J Am Chem Soc. 2018;140(18):5914–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ahn BH, Rhim H, Kim SY, Sung YM, Lee MY, Choi JY, et al. alpha-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J Biol Chem. 2002;277:12334–42.

    Article  CAS  PubMed  Google Scholar 

  60. Yap TL, Gruschus JM, Velayati A, Westbroek W, Goldin E, Moaven N, et al. Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem. 2011;286(32):28080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, et al. Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci. 2012;32(10):3306–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fernandes HJ, Hartfield EM, Christian HC, Emmanoulidou E, Zheng Y, Booth H, et al. ER stress and Autophagic perturbations Lead to elevated extracellular alpha-Synuclein in GBA-N370S Parkinson's iPSC-derived dopamine neurons. Stem Cell Reports. 2016;6(3):342–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK. Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci Off J Soc Neurosci. 2012;32(10):3301–5.

    Article  CAS  Google Scholar 

  64. Suzuki T, Shimoda M, Ito K, Hanai S, Aizawa H, Kato T, et al. Expression of human Gaucher disease gene GBA generates neurodevelopmental defects and ER stress in Drosophila eye. PLoS One. 2013;2(8):e69147.

    Article  CAS  Google Scholar 

  65. Heman-Ackah SM, Manzano R, Hoozemans JJM, Scheper W, Flynn R, Haerty W, et al. Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Hum Mol Genet. 2017;26(22):4441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, et al. Reversible conformational conversion of alpha-synucelin into toxic assemblies by glucosylceramide. Neuron. 2018;97:92–107.

    Article  CAS  PubMed  Google Scholar 

  67. Lee H-J, Shin SY, Choi C, Lee YH, Lee S-J. Formation and removal of α-Synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem. 2002;277(7):5411–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wong YC, Krainc D. Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease. Mov Disabil. 2016;31(11):1610–8.

    Article  CAS  Google Scholar 

  69. Devi L, Anandatheerthavarada HK. Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer's and Parkinson’s diseases. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2010;1802(1):11–9.

    Article  CAS  Google Scholar 

  70. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106:17–32.

    Article  PubMed  CAS  Google Scholar 

  71. Enquist IB, Bianco CL, Ooka A, Nilsson E, Månsson J-E, Ehinger M, et al. Murine models of acute neuronopathic Gaucher disease. PNAS. 2007;104(44):17483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, et al. Mitochondria and quality control defects in a mouse model of Gaucher disease—links to Parkinson’s disease. Cell Metab. 2013;17:941–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gegg M, Schapira AH. Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiol Dis. 2016;90:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rostovtseva TK, Gurnev PA, Protchenko O, Hoogerheide DP, Yap TL, Philpott CC, et al. Synuclein shows high affinity interaction with voltage- dependent Anion Channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biochem. 2015;290(30):18467–77.

    CAS  Google Scholar 

  75. Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P. Triggers, facilitators, and aggravators: redefining Parkinson's disease pathogenesis. Trends Neurosci. 2018;42(1):4–13

    Article  CAS  PubMed  Google Scholar 

  76. Davidson BA, Hassan S, Garcia EJ, Tayebi N, Sidransky E. Exploring genetic modifiers of Gaucher disease: the next horizon. Hum Mutat. 2018;39(12):1739–51.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gan-Or Z, Bar-Shira A, Gurevich T, Giladi N, Orr-Urtreger A. Homozygosity of the MTX1 c.184T>A (P.S63T) alteration modifies the age of onset in GBA associate Parkinson’s Disease. Neurogenetics. 2011;12(4):325–32.

    Article  CAS  PubMed  Google Scholar 

  78. Gan-Or Z, Amshalom I, Bar-Shira A, Gana-Weisz M, Mirelman A, Marder K, Bressman S, Giladi N, Orr-Urtreger A. The Alzheimer disease BIN1 locus as a modifier of GBA-associated Parkinson disease. J Neurol. 2015;262:2443–7.

    Article  CAS  PubMed  Google Scholar 

  79. Jinn S, Drolet RE, Cramer PE, Wong AH, Toolan DM, Gretzula CA, et al. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases alpha-synuclein aggregation. Proc Natl Acad Sci U S A. 2017;114(9):2389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H, Lullmann-Rauch R, et al. LIMP-2 expression is critical for beta-glucocerebrosidase activity and alpha-synuclein clearance. Proc Natl Acad Sci U S A. 2014;111(43):15573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gan-Or Z, Dion PA, Rouleau GA. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy. 2015;11(9):1443–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beilina A, Cookson MR. Genes associated with Parkinson’s disease: regulation of autophagy and beyond. J Neurochem. 2016;139:91–107.

    Article  CAS  PubMed  Google Scholar 

  83. Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 2019;42(2):140–9.

    Article  CAS  PubMed  Google Scholar 

  84. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15(21):3132–45.

    Article  CAS  PubMed  Google Scholar 

  85. Yang C, Swallows CL, Zhang C, Lu J, Xiao H, Brady RO, et al. Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones. PNAS. 2014;111(1):249–54.

    Article  CAS  PubMed  Google Scholar 

  86. Biegstraaten M, van Schaik IN, Aerts JM, Langeveld M, Mannens MM, Bour LJ, et al. A monozygotic twin pair with highly discordant Gaucher phenotypes. Blood Cells Mol Dis. 2011;46(1):39–41.

    Article  CAS  PubMed  Google Scholar 

  87. Lachmann RH, Grant IR, Halsall D, Cox TM. Twin pairs showing discordance of phenotype in adult Gaucher’s disease. Qjm. 2004;97(4):199–204.

    Article  CAS  PubMed  Google Scholar 

  88. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  89. Farfel-Becker T, Vitner EB, Futerman AH. Animal models for Gaucher disease research. Dis Model Mech. 2011;4(6):746–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dexter PM, Caldwell KA, Caldwell GA. A predictable worm: application of Caenorhabditis elegans for mechanistic investigation of movement disorders. Neurotherapeutics. 2012;9(2):393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maor G, Rencus-Lazar S, Filocamo M, Steller H, Segal D, Horowitz M. Unfolded protein response in Gaucher disease: from human to Drosophila. Orphanet J Rare Dis. 2013;8:140.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Maor G, Cabasso O, Krivoruk O, Rodriguez J, Steller H, Segal D, et al. The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum Mol Genet. 2016;25(13):2712–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Abul-Khair SB, Dhanushkodi N, Ardah MT, Chen W, Yang YF, et al. Silencing of glucocerebrosidase gene in Drosophila enhances the aggregation of Parkinson’s disease associated alpha-synuclein mutant A53T and affects locomotor activity. Front Neurosci. 2018;12:81.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa-Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11(4):e1005065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Farfel-Becker T, Do J, Tayebi N, Sidransky E. Can GBA1-Associated Parkinson Disease Be Modeled in the Mouse? Trends Neurosci. 2019, 1519(1): 1–13.

    Google Scholar 

  96. Tayebi N, Parisiadoub L, Berhea B, Gonzaleza AN, Serra-Vinardella J, Tamargoa RJ, Maniwanga E, Sorrentinoc Z, Fujiwarad H, Greya RJ, Hassana S, Blech-Hermonia YN, Chenb C, McGlincheye R, Makariou-Pikisb C, Brooksc M, Ginnsf EI, Oryd DS, Giassonc BI, Sidransky E. Glucocerebrosidase haploinsufficiency in A53T α-synuclein mice impacts disease onset and course. Mol Genet Metab. 2017;122(4):198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Migdalska-Richards A, Wegrzynowicz M, Rusconi R, Deangeli G, Di Monte DA, Spillantini MG, et al. The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice. Brain. 2017;140(10):2706–21.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kim D, Hwang H, Choi S, Kwon SH, Lee S, Park JH, SangMin K, Seok KH. D409H GBA1 mutation accelerates the progression of pathology in A53T alpha-synuclein transgenic mouse model. Acta Neuropathol Commun. 2018;6:32–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Sun Y, Liou B, Xu YH, Quinn B, Zhang W, Hamler R, et al. Ex vivo and in vivo effects of isofagomine on acid beta-glucosidase variants and substrate levels in Gaucher disease. J Biol Chem. 2012;287(6):4275–87.

    Article  CAS  PubMed  Google Scholar 

  100. Manning-Bog AB, Schule B, Langston JW. Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology. 2009;30(6):1127–32.

    Article  CAS  PubMed  Google Scholar 

  101. Rocha EM, Smith GA, Park E, Cao H, Graham AR, Brown E, et al. Sustained systemic Glucocerebrosidase inhibition induces brain alpha-Synuclein aggregation, microglia and complement C1q activation in mice. Antioxid Redox Signal. 2015;23(6):550–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu YY, Chiu FL, Yeh CS, Kuo HC. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol. 2019;9(1):180177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pacitti D, Privolizzi R, Bax BE. Organs to cells and cells to organoids: The evolution of in vitro central nervous system modelling. Front Cell Neurosci. 2019;13:129.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee SEJH. Modeling ALS and FTD with iPSC-derived neurons. Brain Res. 2017;1656:88–97.

    Article  CAS  PubMed  Google Scholar 

  105. Perriot SAM, Perriard G, Canales M, Jonkmans N, Merienne N, Meunier C, El Kassar L, Perrier AL, Laplaud D-A, Schluep M, Déglon N, Du Pasquier R. Human induced pluripotent stem cell-derived astrocytes are differentially activated by multiple Sclerosis-Associated Cytokines. Stem Cell Reports. 2018;11:1–12.

    Article  CAS  Google Scholar 

  106. Lim SM, Choi WJ, Oh K-W, Xue Y, Choi JY, Kim SH, et al. Directly converted patient-specific induced neurons mirror the neuropathology of FUS with disrupted nuclear localization in amyotrophic lateral sclerosis. Mol Neurodegener. 2016;11(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. McKinney CE. Using induced pluripotent stem cells derived neurons to model brain diseases. Neural Regen Res. 2017;12(7):1062–7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Aflaki E, Stubblefield BK, Maniwang E, Lopez G, Moaven N, Goldin E, et al. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs. Sci Transl Med. 2014;6(240):240ra73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Awad O, Pannicker LM, Deranieh RM, Srikanth MP, Brown RA, Peesay AT, Park TS, Zambidis ET, Ricardo A. Feldman. Altered differentiation potential of Gaucher’s disease iPSC neuronal progenitors du to Wnt/Beta -catenin downregulation. Stem Cell Reports. 2017;9:1853–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kouroupi G, Taoufik E, Vlachos IS, Tsioras K, Antoniou N, Papastefanaki F, et al. Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson’s disease. Proc Natl Acad Sci U S A. 2017;114(18):E3679–E88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schondorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, et al. iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.

    Article  PubMed  CAS  Google Scholar 

  112. Fernandes HJ, Ryan BJ, Wade-Martins R. Commentary: Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Front Neurosci. 2016;10:578.

    PubMed  PubMed Central  Google Scholar 

  113. Momcilovic ORS, Oron TR, Meyer M, Mooney S, Rao MS, Zeng X. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson’s Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS One. 2016;11(5):e0154890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Brawner AT, Xu R, Liu D, Jiang P. Generating CNS organoids from human induced pluripotent stem cells for modeling neurological disorders. Int J Physiol Pathophysiol Pharmacol. 2017;9(3):101–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pitcairn C, Wani WY, Mazzulli JR. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson’s disease. Neurobiol Dis. 2019;122:72–82.

    Article  CAS  PubMed  Google Scholar 

  116. Panicker LM, Miller D, Park TS, Patel B, Azevedo JL, Awad O, et al. Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci U S A. 2012;109(44):18054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Monzio Compagnoni G, Kleiner G, Samarani M, Aureli M, Faustini G, Bellucci A, et al. Mitochondrial dysregulation and impaired autophagy in iPSC-derived dopaminergic neurons of multiple system atrophy. Stem Cell Reports. 2018;11(5):1185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wren MC, Zhao J, Liu CC, Murray ME, Atagi Y, Davis MD, et al. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Mol Neurodegener. 2015;10:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Iovino M, Agathou S, González-Rueda A, Del Castillo V-HM, Borroni B, Alberici A, et al. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain. 2015;138:3345–59.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hallmann A-L, Araúzo-Bravo MJ, Mavrommatis L, Ehrlich M, Röpke A, Brockhaus J, et al. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci Reports. 2017;7:42991.

    Article  Google Scholar 

  121. di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Muñoz JP, Richaud-Patin Y, et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson's disease. Stem Cell Reports. 2019;12(2):213–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hoes MF, Bomer N, van der Meer P. Concise review: the current state of human in vitro cardiac disease modeling: A focus on gene editing and tissue engineering. Stem Cells Transl Med. 2018;8(1):66–74

    Article  PubMed  PubMed Central  Google Scholar 

  123. DLaK AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 2017;18(10):573–84.

    Article  CAS  Google Scholar 

  124. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9.

    Article  CAS  PubMed  Google Scholar 

  125. Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. 2017;95(4):779–90 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Qian XNH, Jacob F, Song H, Ming GL. Using brain organoids to understand Zika virus-induced microcephaly. Development. 2017;144(6):952–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bershteyn MNT, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR. Human iPSC-derived cerebral organoids model cellular features of Lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 2017;20(4):435–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang PMR, Pedrosa E, Kirschenbaum M, Bayrak C, Zheng D, Lachman HM. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism. 2017;8:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Deyle DRRD. Adeno-associated virus vector integration. Curr Opin Mol Ther. 2009;11(4):442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM, Passini MA, Grabowski GA, Schlossmacher MG, Sidman RL, Cheng SH, et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci U S A. 2011;108(29):12101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Massaro G, Mattar CNZ, Wong AMS, Sirka E, Buckley SMK, Herbert BR, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24(9):1317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Marshall J, McEachern KA, Kyros JA, Nietupski JB, Budzinski T, Ziegler RJ, et al. Demonstration of feasibility of in vivo gene therapy for Gaucher disease using a chemically induced mouse model. Mol Ther. 2002;6(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  134. Sardi SP, Clarke J, Viel C, Chan M, Tamsett TJ, Treleaven CM, et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc Natl Acad Sci U S A. 2013;110(9):3537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. de la Mata M, Cotan D, Oropesa-Avila M, Garrido-Maraver J, Cordero MD, Villanueva Paz M, et al. Pharmacological chaperones and coenzyme Q10 treatment improves mutant beta-Glucocerebrosidase activity and mitochondrial function in Neuronopathic forms of Gaucher disease. Sci Rep. 2015;5:10903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Fog CK, Zago P, Malini E, Solanko LM, Peruzzo P, Bornaes C, et al. The heat shock protein amplifier arimoclomol improves refolding, maturation and lysosomal activity of glucocerebrosidase. EBioMedicine. 2018;38:142–53.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Maegawa GH, Tropak MB, Buttner JD, Rigat BA, Fuller M, Pandit D, et al. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem. 2009;284(35):23502–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Parenti G, Andria G, Valenzano KJ. Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther. 2015;23(7):1138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Migdalska-Richards A, Daly L, Bezard E, Schapira AH. Ambroxol effects in glucocerebrosidase and alpha-synuclein transgenic mice. Ann Neurol. 2016;80(5):766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aflaki E, Borger DK, Moaven N, Stubblefield XBK, Rogers SA, Patnaik S, Schoenen FJ, Westbroek W, Zheng W, Sullivan P, Fujiwara H, Sidhu R, Khaliq ZM, Lopez GJ, Goldstein DS, Ory DS, Marugan J, Sidransky E. A New Glucocerebrosidase Chaperone Reduces -Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism. J Neurosci. 2016;36(28):7441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, et al. Activation of beta-Glucocerebrosidase reduces pathological alpha-Synuclein and restores lysosomal function in Parkinson's patient midbrain neurons. J Neurosci. 2016;36(29):7693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Khanna R, Benjamin ER, Pellegrino L, Schilling A, Rigat BA, Soska R, et al. The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase. FEBS J. 2010;277(7):1618–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sanders A, Hemmelgarn H, Melrose HL, Hein L, Fuller M, Clarke LA. Transgenic mice expressing human glucocerebrosidase variants: utility for the study of Gaucher disease. Blood Cells Mol Dis. 2013;51(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  144. Sawkar AR, D'Haeze W, Kelly JW. Therapeutic strategies to ameliorate lysosomal storage disorders--a focus on Gaucher disease. Cell Mol Life Sci. 2006;63(10):1179–92.

    Article  CAS  PubMed  Google Scholar 

  145. Yang C, Rahimpoura S, Lua J, Pacakb K, Ikejiria B, Brady RO, Zhuang Z. Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. PNAS. 2013;110(3):966–71.

    Article  CAS  PubMed  Google Scholar 

  146. Xi Lu YD, Yu D, Cao H, Wang L, Lui L, Yu C, Zhang Y, Guo X, Yu G. Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer’s disease. PLoS One. 2014;9(7):e103067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Wang Y, Wang S-Y, Zhang X-H, Zhao M, Hou C-M, Xu Y-J, Du ZY, Yu X-D. FK228 inhibits Hsp90 chaperone function in K562 cells via hyperacetylation of Hsp70. Biochem Biophys Res Commun. 2007;356:998–1003.

    Article  CAS  PubMed  Google Scholar 

  148. Lu J, Yanga C, Chena M, Yea DY, Lonsera RR, Brady RO, Zhuanga Z. Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease. PNAS. 2011;108(52):21200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Munkacs AB, Chen FW, Brinkman MA, Higaki K, Gutiérrez GD, Chaudhar J, Layer JV, Tong A, Bard M, Boone C, Ioannou YA, Sturley SL. An “Exacerbate-reverse” Strategy in Yeast Identifies Histone Deacetylase Inhibition as a Correction for Cholesterol and Sphingolipid Transport Defects in Human Niemann-Pick Type C Disease. J Biol Chem. 2011;286(27):23842–51.

    Article  CAS  Google Scholar 

  150. Pipaliaa NH, Cosnerb CC, Huanga A, Chatterjeeb A, Bourbonb P, Farleyb N, Helquistb P, Wiestb O, Maxfielda FR. Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. PNAS. 2011;108(14):5620–5.

    Article  Google Scholar 


Page 2

Simplified diagram of the synthesis and trafficking of GCase in a functional cell. 1) GBA1, the gene coding for GCase, is transcribed into mRNA that is then transported out of the nucleus to the ER. 2) GCase is synthesized in the ER, where it binds to the protein LIMP2 in the favorable neutral pH of the cytoplasm. 3) LIMP2 transfers GCase through the Golgi. 4) GCase is then transferred to a late endosome. 5) When the late endosome fuses with a lysosome to form an autolysosome, LIMP2 disengages from GCase due to the decrease in pH. In the lysosome, GCase is activated by SAPC. GCase actively hydrolyzes its substrates GlcCer and GlcSph in this compartment