Which of the following observations provides the best evidence that acetyl-coa negatively regulates

1. Abaibou, H., J. Pommier, S. Benoit, G. Giordano, and M. Mandrand-Berthelot. 1995. Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J. Bacteriol. 177:7141-7149. [PMC free article] [PubMed] [Google Scholar]

2. Abdel-Hamid, A. M., M. M. Attwood, and J. R. Guest. 2001. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147:1483-1498. [PubMed] [Google Scholar]

3. Alam, K. Y., and D. P. Clark. 1989. Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. J. Bacteriol. 171:6213-6217. [PMC free article] [PubMed] [Google Scholar]

4. Alexeeva, S., B. de Kort, G. Sawers, K. J. Hellingwerf, and M. J. de Mattos. 2000. Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J. Bacteriol. 182:4934-4940. [PMC free article] [PubMed] [Google Scholar]

5. Allen, A. 1984. The structure and function of gastrointestinal mucus, p. 3-11. In I. E. C. Boedeker (ed.), Attachment of organisms to the gut mucosa, vol. II. CRC Press, Inc., Boca Raton, Fla. [Google Scholar]

6. Amarasingham, C. D., and B. D. Davis. 1965. Regulation of delta-ketoglutarate dehydrogenase formation in Escherichia coli. J. Biol. Chem. 240:3664-3668. [PubMed] [Google Scholar]

7. Amemura, M., K. Makino, H. Shinagawa, and A. Nakata. 1990. Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM opon reading frame 2. J. Bacteriol. 172:6300-6307. [PMC free article] [PubMed] [Google Scholar]

8. Ames, G. F., and A. K. Joshi. 1990. Energy coupling in bacterial periplasmic permeases. J. Bacteriol. 172:4133-4137. [PMC free article] [PubMed] [Google Scholar]

9. Amsler, C. D., M. Cho, and P. Matsumura. 1993. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J. Bacteriol. 175:6238-6244. [PMC free article] [PubMed] [Google Scholar]

10. Anderson, G. G., J. J. Palermo, J. D. Schilling, R. Roth, J. Heuser, and S. J. Hultgren. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105-107. [PubMed] [Google Scholar]

11. Andreesen, J. R. 1994. Glycine metabolism in anaerobes. Antonie Leeuwenhoek 66:223-237. [PubMed] [Google Scholar]

12. Andreesen, J. R., M. Wagner, D. Sonntag, M. Kohlstock, C. Harms, T. Gursinsky, J. Jager, T. Parther, U. Kabisch, A. Grantzdorffer, A. Pich, and B. Sohling. 1999. Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria. Biofactors 10:263-270. [PubMed] [Google Scholar]

13. Antelmann, H., J. Bernhardt, R. Schmid, H. Mach, U. Volker, and M. Hecker. 1997. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18:1451-1463. [PubMed] [Google Scholar]

14. Argenzio, R. A., and M. Southworth. 1974. Sites of organic acid production and absorption in gastrointestinal tract of the pig. Am. J. Physiol. Endocrinol. Metab. 228:454-460. [PubMed] [Google Scholar]

15. Aristidou, A. A., K.-Y. San, and G. N. Bennett. 1994. Modification of central pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the Bacillus subtilis acetolactate synthase gene. Biotechnol. Bioeng. 44:944-951. [PubMed] [Google Scholar]

16. Arkowitz, R., and R. Abeles. 1989. Identification of acetyl phosphate as the product of clostridial glycine reductase: evidence for an acetyl enzyme intermediate. Biochemistry 28:4639-4644. [PubMed] [Google Scholar]

17. Arkowitz, R., and R. Abeles. 1991. Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate. Biochemistry 30:4090-4097. [PubMed] [Google Scholar]

18. Arthur, M., F. Depardieu, G. Gerbaud, M. Galimand, R. Leclercq, and P. Courvalin. 1997. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J. Bacteriol. 179:97-106. [PMC free article] [PubMed] [Google Scholar]

19. Asada, Y., Miyake, M., Miyake, J., Kurane, R., and Tokiwa, Y. 1999. Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria—the metabolism and potential for CO2 recycling. Int. J. Biol. Macromol. 25:37-42. [PubMed] [Google Scholar]

20. Atkinson, M. R., and A. J. Ninfa. 1998. Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol. Microbiol. 29:431-447. [PubMed] [Google Scholar]

21. Azam, T. A., and A. Ishihama. 1999. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274:33105-33113. [PubMed] [Google Scholar]

22. Azam, T. A., A. Iwata, A. Nishimura, S. Ueda, and A. Ishihama. 1999. Growth phase- dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181:6361-6370. [PMC free article] [PubMed] [Google Scholar]

23. Ball, C. A., R. Osuna, K. C. Ferguson, and R. C. Johnson. 1992. Dramatic changes in FIS levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174:8043-8056. [PMC free article] [PubMed] [Google Scholar]

24. Bang, I., B. Kim, J. Foster, and Y. Park. 2000. OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar Typhimurium. J. Bacteriol. 182:2245-2252. [PMC free article] [PubMed] [Google Scholar]

25. Bang, I. S., J. P. Audia, Y. K. Park, and J. W. Foster. 2002. Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response. Mol. Microbiol. 44:1235-1250. [PubMed] [Google Scholar]

26. Barak, R., W. N. Abouhamad, and M. Eisenbach. 1998. Both acetate kinase and acetyl coenzyme A synthetase are involved in acetate-stimulated chnage in the direction of flagellar rotation in Escherichia coli. J. Bacteriol. 180:985-988. [PMC free article] [PubMed] [Google Scholar]

27. Barak, R., and M. Eisenbach. 2001. Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. Mol. Microbiol. 40:731-743. [PubMed] [Google Scholar]

28. Barak, R., and M. Eisenbach. 1999. Chemotactic-like response of Escherichia coli cells lacking the known chemotaxis machinery but containing overexpressed CheY. Mol. Microbiol. 31:1125-1137. [PubMed] [Google Scholar]

29. Barak, R., and M. Eisenbach. 2004. Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. J. Mol. Biol. 342:375-381. [PubMed] [Google Scholar]

30. Barak, R., K. Prasad, A. Shainskaya, A. J. Wolfe, and M. Eisenbach. 2004. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J. Mol. Biol. 342:383-401. [PubMed] [Google Scholar]

31. Barak, R., M. Welch, A. Yanovsky, K. Oosawa, and M. Eisenbach. 1992. Acetyladenylate or its derivative acetylates the chemotaxis protein CheY in vitro and increases its activity at the flagellar switch. Biochemistry 31:10099-10107. [PubMed] [Google Scholar]

32. Barker, H. A. 1992. The path from acetylphosphate to acetyl CoA. FASEB J. 6:3014-3015. [PubMed] [Google Scholar]

33. Barnard, A., A. Wolfe, and S. Busby. 2004. Regulation at complex bacterial promoters: how bacteria use different promoter organisations to produce different regulatory outcomes. Curr. Opin. Microbiol. 7:102-108. [PubMed] [Google Scholar]

34. Baronofsky, J. J., W. J. A. Schreurs, and E. R. Kashket. 1984. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 48:1134-1139. [PMC free article] [PubMed] [Google Scholar]

35. Baskett, R. C., and D. J. Hentges. 1973. Shigella flexneri inhibition by acetic acid. Infect. Immun. 8:91-97. [PMC free article] [PubMed] [Google Scholar]

36. Basson, M. D., N. J. Emenaker, and F. Hong. 1998. Differential modulation of human (Caco-2) colon cancer cell line phenotype by short chain fatty acids. Proc. Soc. Exp. Biol. Med. 217:476-483. [PubMed] [Google Scholar]

37. Batt, R. M., H. C. Rutgers, and A. A. Sancak. 1996. Enteric bacteria: friend or foe? J. Small Anim. Pract. 37:261-267. [PubMed] [Google Scholar]

38. Bauer, D. A., A. Ben-Basst, M. Dawson, V. T. Dela Peunte, and J. O. Neway. 1990. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Appl. Environ. Microbiol. 56:1296-1302. [PMC free article] [PubMed] [Google Scholar]

39. Bearson, B. L., L. Wilson, and J. W. Foster. 1998. A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J. Bacteriol. 180:2409-2417. [PMC free article] [PubMed] [Google Scholar]

40. Beatty, C. M., D. F. Browning, S. J. W. Busby, and A. J. Wolfe. 2003. CRP-dependent activation of the Escherichia coli acsP2 promoter by a synergistic class III mechanism. J. Bacteriol. 185:5148-5157. [PMC free article] [PubMed] [Google Scholar]

41. Begley, T. P., C. Kinsland, and E. Strauss. 2001. The biosynthesis of coenzyme A in bacteria. Vitam. Horm. 61:157-171. [PubMed] [Google Scholar]

42. Behrens, M., and P. Durre. 2000. KdpE of Clostridium acetobutylicum is a highly specific response regulator controlling only the expression of the kdp operon. J. Mol. Microbiol. Biotechnol. 2:45-52. [PubMed] [Google Scholar]

43. Belaich, A., and J. P. Belaich. 1976. Microcalorimetric study of the anaerobic growth of Escherichia coli: growth thermograms in a synthetic medium. J. Bacteriol. 125:14-18. [PMC free article] [PubMed] [Google Scholar]

44. Bennett, P. M., and W. H. Holms. 1975. Reversible inactivation of the isocitrate dehydrogenase of Escherichia coli ML308 during growth on acetate. J. Gen. Microbiol. 87:37-51. [PubMed] [Google Scholar]

45. Bentley, R. 2000. From ′reactive C2 units' to acetyl coenzyme A: a long trail with an acetyl phosphate detour. Trends Biochem. Sci. 25:302-305. [PubMed] [Google Scholar]

46. Berg, P. 1956. Acyl adenylates: an enzymatic mechanism of acetate activation. J. Biol. Chem. 222:991-1013. [PubMed] [Google Scholar]

47. Bernish, B., and I. van de Rijn. 1999. Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J. Biol. Chem. 274:4786-4793. [PubMed] [Google Scholar]

48. Bertagnolli, B. L., and L. P. Hager. 1991. Activation of Escherichia coli pyruvate oxidase enhances the oxidation of hydroxyethylthiamin pyrophosphate. J. Biol. Chem. 266:10168-10173. [PubMed] [Google Scholar]

49. Bertagnolli, B. L., and L. P. Hager. 1993. Role of flavin in acetoin production by two bacterial pyruvate oxidases. Arch. Biochem. Biophys. 300:364-371. [PubMed] [Google Scholar]

50. Blankenhorn, D., J. Phillips, and J. L. Slonczewski. 1999. Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two- dimensional gel electrophoresis. J. Bacteriol. 181:2209-2216. [PMC free article] [PubMed] [Google Scholar]

51. Bleves, S., M.-N. Marenne, G. Detry, and G. R. Cornelis. 2002. Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J. Bacteriol. 184:3214-3223. [PMC free article] [PubMed] [Google Scholar]

52. Bobik, T. A., G. D. Havemann, R. J. Busch, D. S. Williams, and H. C. Aldrich. 1999. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J. Bacteriol. 181:5967-5975. [PMC free article] [PubMed] [Google Scholar]

53. Bochner, B. R., and B. N. Ames. 1982. Selective precipitation orthophosphate from mixtures containing labile phosphorylated metabolites. Anal. Biochem. 122:100-107. [PubMed] [Google Scholar]

54. Bock, A., and G. Sawers. 1996. Fermentation, p. 262-282. In F. C. Neidhardt, R. Curtiss, III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

55. Bohnhoff, M., C. P. Miller, and W. R. Martin. 1964. Resistance of the mouse's intestinal tract to experimental Salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J. Exp. Med. 120:805-816. [PMC free article] [PubMed] [Google Scholar]

56. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359-378. [PMC free article] [PubMed] [Google Scholar]

57. Bouche, S., E. Klauck, D. Fischer, M. Lucassen, K. Jung, and R. Hengge-Aronis. 1998. Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator-controlled process. Mol. Microbiol. 27:787-795. [PubMed] [Google Scholar]

58. Boucher, P. E., F. D. Menozzi, and C. Locht. 1994. The modular architecture of bacterial response regulators. Insights into the activation mechanism of the BvgA transactivator of Bordetella pertussis. J. Mol. Biol. 241:363-377. [PubMed] [Google Scholar]

59. Brasen, C., and P. Schonheit. 2001. Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch. Microbiol. 175:360-368. [PubMed] [Google Scholar]

60. Brillard, J., C. Ribeiro, N. Boemare, M. Brehelin, and A. Givaudan. 2001. Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Appl. Environ. Microbiol. 67:2515-2525. [PMC free article] [PubMed] [Google Scholar]

61. Brown, T. D. K., M. C. Jones-Mortimer, and H. L. Kornberg. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol. 102:327-336. [PubMed] [Google Scholar]

62. Browning, D. F., C. M. Beatty, E. A. Sanstad, K. A. Gunn, S. J. W. Busby, and A. J. Wolfe. 2004. Modulation of CRP-dependent transcription at the Eschericheria coli acsP2 promoter by a nucleoprotein complex: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol. 51:241-254 [PubMed] [Google Scholar]

63. Browning, D. F., C. M. Beatty, A. J. Wolfe, J. A. Cole, and S. J. W. Busby. 2002. Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol. Microbiol. 43:687-701. [PubMed] [Google Scholar]

64. Browning, D. F., and S. J. W. Busby. 2004. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2:1-5. [PubMed] [Google Scholar]

65. Bruggemann, C., K. Denger, A. M. Cook, and J. Ruff. 2004. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 150:805-816. [PubMed] [Google Scholar]

66. Buckley, B. M., and D. H. Williamson. 1977. Origins of blood acetate in the rat. Biochem. J. 166:539-545. [PMC free article] [PubMed] [Google Scholar]

67. Bulter, T., S. G. Lee, W. W. Wong, E. Fung, M. R. Connor, and J. C. Liao. 2004. Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA 101:2299-2304. [PMC free article] [PubMed] [Google Scholar]

68. Bunch, P. K., F. Mat-Jan, N. Lee, and D. P. Clark. 1997. The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187-195. [PubMed] [Google Scholar]

69. Busby, S., and R. Ebright. 1999. Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293:199-213. [PubMed] [Google Scholar]

70. Buss, K. A., D. R. Cooper, C. Ingram-Smith, J. G. Ferry, D. A. Sanders, and M. S. Hasson. 2001. Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J. Bacteriol. 183:680-686. [PMC free article] [PubMed] [Google Scholar]

71. Buss, K. A., C. Ingram-Smith, J. G. Ferry, D. A. Sanders, and M. S. Hasson. 1997. Crystallization of acetate kinase from Methanosarcina thermophila and prediction of its fold. Protein Sci. 6:2659-2662. [PMC free article] [PubMed] [Google Scholar]

72. Butow, R. A., and N. G. Avadhani. 2004. Mitochondrial signaling: the retrograde response. Mol. Cell 14:1-15. [PubMed] [Google Scholar]

73. Cai, S. J., and M. Inouye. 2002. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 277:24155-24161. [PubMed] [Google Scholar]

74. Carmany, D. O., K. Hollingsworth, and W. R. McCleary. 2003. Genetic and biochemical studies of phosphatase activity of PhoR. J. Bacteriol. 185:1112-1115. [PMC free article] [PubMed] [Google Scholar]

75. Carroll, P. T. 1997. Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release. Brain Res. 753:47-55. [PubMed] [Google Scholar]

76. Chamnongpol, S., M. Cromie, and E. A. Groisman. 2003. Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica. J. Mol. Biol. 325:795-807. [PubMed] [Google Scholar]

77. Chamnongpol, S., and E. A. Groisman. 2000. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J. Mol. Biol. 300:291-305. [PubMed] [Google Scholar]

78. Chang, D.-E., S. Shin, J.-S. Rhee, and J.-G. Pan. 1999. Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl-CoA flux for the growth and survival. J. Bacteriol. 181:6656-6663. [PMC free article] [PubMed] [Google Scholar]

79. Chang, Y. Y., and J. E. J. Cronan. 1983. Genetic and biochemical analyses of Escherichia coli strains having a mutation in the structural gene (poxB) for pyruvate oxidase. J. Bacteriol. 154:756-762. [PMC free article] [PubMed] [Google Scholar]

80. Chang, Y. Y., A. Y. Wang, and J. Cronan, J. E. 1994. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS (katF)gene. Mol. Microbiol. 11:1019-1028. [PubMed] [Google Scholar]

81. Chatterjee, R., C. S. Millard, K. Champion, D. P. Clark, and M. I. Donnelly. 2001. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl. Environ. Microbiol. 67:148-154. [PMC free article] [PubMed] [Google Scholar]

82. Chen, R., V. Hatzimanikatis, W. M. Yap, P. W. Postma, and J. E. Bailey. 1997. Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine- producing recombinant Escherichia coli. Biotechnol. Prog. 13:768-775. [PubMed] [Google Scholar]

83. Chiang, S. L., and J. J. Mekalanos. 1998. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27:797-805. [PubMed] [Google Scholar]

84. Chohnan, S., H. Furukawa, T. Fujio, H. Nishihara, and Y. Takamura. 1997. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Appl. Environ. Microbiol. 63:553-560. [PMC free article] [PubMed] [Google Scholar]

85. Chohnan, S., H. Izawa, H. Nishihara, and Y. Takamura. 1998. Changes in size of intracellular pools of coenzyme A and its thioesters in Escherichia coli K-12 cells to various carbon sources and stresses. Biosci. Biotechnol. Biochem. 62:1122-1128. [PubMed] [Google Scholar]

86. Chohnan, S., and Y. Takamura. 1991. A simple micromethod for measurement of CoASH and its use in measuring intracellular levels of CoASH and short chain acyl- CoAs in Escherichia coli K12 cells. Agric. Biol. Chem. 55:87-94. [Google Scholar]

87. Chou, T. C., and F. Lipmann. 1952. Separation of acetyl transfer enzymes in pigeon liver extract. J. Biol. Chem. 196:89-103. [PubMed] [Google Scholar]

88. Claes, W. A., A. Puhler, and J. Kalinowski. 2002. Identification of two prpdbc gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J. Bacteriol. 184:2728-2739. [PMC free article] [PubMed] [Google Scholar]

89. Clark, D. P. 1989. The fermentation pathways of Escherichia coli. FEMS Microbiol. Rev. 5:223-234. [PubMed] [Google Scholar]

90. Clark, D. P., and J. E. Cronan, Jr. 1996. Two-carbon compounds and fatty acids as carbon sources, p. 343-357. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

91. Clegg, S., and K. T. Hughes. 2002. FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184:1209-1213. [PMC free article] [PubMed] [Google Scholar]

92. Comolli, J. C., A. J., Carl, C. Hall, and T. Donohue. 2002. Transcriptional activation of the Rhodobacter sphaeroides cytochrome c2 gene promoter by the response regulator PrrA. J. Bacteriol. 184:390-399. [PMC free article] [PubMed] [Google Scholar]

93. Contiero, J., C. M. Beatty, S. Kumari, C. L. DeSanti, W. R. Strohl, and A. J. Wolfe. 2000. Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. J. Ind. Microbiol. Biotechnol. 24:421-430. [Google Scholar]

94. Cook, A. M., and K. Denger. 2002. Dissimilation of the C2 sulfonates. Arch. Microbiol. 179:1-6. [PubMed] [Google Scholar]

95. Cozzone, A. J. 1998. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu. Rev. Microbiol. 52:127-164. [PubMed] [Google Scholar]

96. Crabtree, B., M. J. Gordon, and S. L. Christie. 1990. Measurement of the rates of acetyl-CoA hydrolysis and synthesis from acetate in rat hepatocytes and the role of these fluxes in substrate cycling. Biochem. J. 270:219-225. [PMC free article] [PubMed] [Google Scholar]

97. Crabtree, B., M. J. Souter, and S. E. Anderson. 1989. Evidence that the production of acetate in rat hepatocytes is a predominantly cytoplasmic process. Biochem. J. 257:673-678. [PMC free article] [PubMed] [Google Scholar]

98. Crabtree, H. G. 1929. Observations on the carbohydrate metabolism of tumours. Biochem. J. 23:536-545. [PMC free article] [PubMed] [Google Scholar]

99. Cronan, J., Jr. 1997. In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J. Bacteriol. 179:1819-1823. [PMC free article] [PubMed] [Google Scholar]

100. Cronan, J. E., Jr., and D. LaPorte. 1996. Tricarboxylic acid cycle and gloxylate bypass, p. 206-216. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

101. Cummings, J. H., and G. T. Macfarlane. 1997. Role of intestinal bacteria in nutrient metabolism. J. Parenter Enteral. Nutr. 21:357-365. [PubMed] [Google Scholar]

102. Cummings, J. H., E. W. Pomare, W. J. Branch, C. P. Naylor, and G. T. Macfarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221-1227. [PMC free article] [PubMed] [Google Scholar]

103. Cunning, C., and T. Elliott. 1999. RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function. J Bacteriol. 181:4853-4862. [PMC free article] [PubMed] [Google Scholar]

104. Cunningham, L., D. Georgellis, J. Green, and J. R. Guest. 1998. Co-regulation of lipoamide dehydrogenase and 2-oxoglutarate dehydrogenase synthesis in Escherichia coli: characterisation of an ArcA binding site in the lpd promoter. FEMS Microbiol. Lett. 169:403-408. [PubMed] [Google Scholar]

105. Cunningham, L., and J. R. Guest. 1998. Transcription and transcript processing in the sdhCDAB-sucABCD operon of Escherichia coli. Microbiology 144:2113-2123. [PubMed] [Google Scholar]

106. Dailey, F. E., and H. C. Berg. 1993. Change in direction of flagellar rotation in Escherichia coli mediated by acetate kinase. J. Bacteriol. 175:3236-3239. [PMC free article] [PubMed] [Google Scholar]

107. Danese, P. N., and T. J. Silhavy. 1998. CpxP, a stress-combative member of the Cpx regulon. J. Bacteriol. 180:831-839. [PMC free article] [PubMed] [Google Scholar]

108. Danese, P. N., Snyder, W. B., Cosma, C. L., Davis, L. J. & Silhavy, T. J. 1995. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev. 9:387-398. [PubMed] [Google Scholar]

109. Da Re, S. S., D. Deville-Bonne, T. Tolstykh, M. Veron, and J. B. Stock. 1999. Kinetics of CheY phosphorylation by small molecule phosphodonors. FEBS Lett. 457:323-326. [PubMed] [Google Scholar]

110. Dartigalongue, C., and S. Raina. 1998. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J. 17:3968-3980. [PMC free article] [PubMed] [Google Scholar]

111. Darwin, A., H. Hussain, L. Griffiths, J. Grove, Y. Sambongi, S. Busby, and J. Cole. 1993. Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol. Microbiol. 9:1255-1265. [PubMed] [Google Scholar]

112. Davalos-Garcia, M., A. Conter, I. Toesca, C. Gutierrez, and K. Cam. 2001. Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J. Bacteriol. 183:5870-5876. [PMC free article] [PubMed] [Google Scholar]

113. de Graef, M. R., S. Alexeeva, J. L. Snoep, and M. J. Teixeira de Mattos. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181:2351-2357. [PMC free article] [PubMed] [Google Scholar]

114. Denger, K., J. Ruff, D. Schleheck, and A. M. Cook. 2004. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology 150:1859-1867. [PubMed] [Google Scholar]

115. Deretic, V., J. H. J. Leveau, C. D. Mohr, and N. S. Hibler. 1992. In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol. Microbiol. 6:2761-2767. [PubMed] [Google Scholar]

116. Deutscher, J., E. Kuster, U. Bergstedt, U. Charrier, and W. Hillen. 1995. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol. Microbiol. 15:1049-1053. [PubMed] [Google Scholar]

117. Deutscher, J., J. Reizer, C. Fischer, A. Galinier, M. H. Saier, Jr., and M. Steinmetz. 1994. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsHI gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J. Bacteriol. 176:3336-3344. [PMC free article] [PubMed] [Google Scholar]

118. Diaz-Ricci, J. C., L. Regan, and J. E. Bailey. 1991. Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnol. Bioeng. 38:1318-1324. [PubMed] [Google Scholar]

119. Doelle, H. W., K. N. Ewings, and N. W. Hollywood. 1982. Regulation of glucose metabolism in bacterial systems. Adv. Biochem. Eng. 23:1-35. [Google Scholar]

120. Dominguez, H., C. Nezondet, N. D. Lindley, and M. Cocaign. 1993. Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol. Lett. 15:449-454. [Google Scholar]

121. Drake, S., R. Bourret, L. Luck, M. Simon, and J. Falke. 1993. Activation of the phosphosignaling protein Che Y. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering. J. Biol. Chem. 268:13081-13088. [PMC free article] [PubMed] [Google Scholar]

122. Durant, J. A., V. K. Lowry, D. J. Nisbet, L. H. Stanker, D. E. Corrier, and S. C. Ricke. 1999. Short-chain fatty acids affect cell-association and invasion of HEp-2 cells by Salmonella typhimurium. J. Environ. Sci. Health Ser. B 34:1083-1099. [PubMed] [Google Scholar]

123. el-Mansi, E. M., and W. H. Holms. 1989. Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J. Gen. Microbiol. 135:2875-2883. [PubMed] [Google Scholar]

124. El-Mansi, M. 2004. Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications. J. Ind. Microbiol. Biotechnol. 31:295-300. [PubMed] [Google Scholar]

125. Farewell, A., K. Kvint, and T. Nystrom. 1998. Negative regulation by RpoS: a case of sigma factor competition. Mol. Microbiol. 29:1039-1051. [PubMed] [Google Scholar]

126. Farmer, W. R., and J. C. Liao. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63:3205-3210. [PMC free article] [PubMed] [Google Scholar]

127. Feng, J., M. R. Atkinson, W. McCleary, J. B. Stock, B. L. Wanner, and A. J. Ninfa. 1992. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J. Bacteriol. 174:6061-6070. [PMC free article] [PubMed] [Google Scholar]

128. Ferre, A., J. de la Mora, T. Ballado, L. Camarena, and G. Dreyfus. 2004. Biochemical study of multiple chey response regulators of the chemotactic pathway of Rhodobacter sphaeroides. J. Bacteriol. 186:5172-5177. [PMC free article] [PubMed] [Google Scholar]

129. Ferrieres, L., and D. J. Clarke. 2003. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol. Microbiol. 50:1665-1682. [PubMed] [Google Scholar]

130. Field, J., B. Rosenthal, and J. Samuelson. 2000. Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol. Microbiol. 38:446-455. [PubMed] [Google Scholar]

131. Fisher, S. H. 1999. Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol. Microbiol. 32:223-232. [PubMed] [Google Scholar]

132. Forst, S., and B. Boylan. 2002. Characterization of the pleiotropic phenotype of an ompR strain of Xenorhabdus nematophila. Antonie Leeuwenhoek 81:43-49. [PubMed] [Google Scholar]

133. Forst, S., J. Delgado, G. Ramakrishnan, and M. Inouye. 1988. Regulation of ompC and ompF expression in Escherichia coli in the absence of envZ. J. Bacteriol. 170:5080-5085. [PMC free article] [PubMed] [Google Scholar]

134. Forst, S., J. Gelgado, A. Rampersaud, and M. Inouye. 1990. In vivo phosphorylation of OmpR, the transcription activator of the ompF and ompC genes in Escherichia coli. J. Bacteriol. 172:3473-3477. [PMC free article] [PubMed] [Google Scholar]

135. Fox, D. K., N. D. Meadow, and S. Roseman. 1986. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J. Biol. Chem. 261:13498-13503. [PubMed] [Google Scholar]

136. Fox, D. K., and S. Roseman. 1986. Isolation and characterization of homogeous acetate kinase from Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 261:13487-13497. [PubMed] [Google Scholar]

137. Fraenkel, D. G. 1996. Glycolysis, p. 189-198. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, D.C.

138. Francez-Charlot, A., B. Laugel, A. Van Gemert, N. Dubarry, F. Wiorowski, M.-P. Castanie-Cornet, C. Gutierrez, and K. Cam. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. Microbiol. 49:823-832. [PubMed] [Google Scholar]

139. Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397-403. [PubMed] [Google Scholar]

140. Fraser, G. M., L. Claret, R. Furness, S. Gupta, and C. Hughes. 2002. Swarming- coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology 148:2191-2201. [PMC free article] [PubMed] [Google Scholar]

141. Freestone, P., S. Grant, M. Trinei, T. Onoda, and V. Norris. 1998. Protein phosphorylation in Escherichia coli L. form NC-7. Microbiology 144:3289-3295. [PubMed] [Google Scholar]

142. Freter, R. 1988. Mechanisms of bacterial colonization of the mucosal surfaces of the gut, p. 45-60, Virulence mechanisms of bacterial pathogens. American Society for Microbiology, Washington, D.C.

143. Freter, R. 1983. Mechanisms that control the microflora in the large intestine, p. 33-54. In D. J. Hentges (ed.), Human intestinal microflora in health and disease. Academic Press, Inc., New York, N.Y.

144. Fujino, T., J. Kondo, M. Ishikawa, K. Morikawa, and T. T. Yamamoto. 2001. Acetyl-CoA Synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276:11420-11426. [PubMed] [Google Scholar]

145. Galinier, A., J. Haiech, M. Kilhoffer, M. Jaquinod, J. Stulke, J. Deutscher, and I. Martin-Verstraete. 1997. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc. Natl. Acad. Sci. USA 94:8439-8444. [PMC free article] [PubMed] [Google Scholar]

146. Galinier, A., M. Kranaja, R. Engelmann, W. Hengstenber, M.-C. Kilhoffer, J. Deutscher, and J. Haiech. 1998. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc. Natl. Acad. Sci. USA 95:1823-1828. [PMC free article] [PubMed] [Google Scholar]

147. Galperin, M. Y., and N. V. Grishin. 2000. The synthetase domains of cobalamin biosynthesis amidotransferases cobB and cobQ belong to a new family of ATP-dependent amidoligases, related to dethiobiotin synthetase. Proteins 41:238-247. [PubMed] [Google Scholar]

148. Galperin, M. Y., A. N. Nikolskaya, and E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 11:11-21. [PubMed] [Google Scholar]

149. Garnak, M., and H. C. Reeves. 1979. Phosphorylation of isocitrate dehydrogenase of Escherichia coli. Science 203:1111-1112. [PubMed] [Google Scholar]

150. Gennis, R. B., and L. P. Hager. 1976. Pyrvuate oxidase, p. 493-504. In A. N. Martonosi (ed.), The enzymes and biological membranes, vol. 2. Plenum, New York, N.Y. [Google Scholar]

151. Gerstmeir, R., A. Cramer, P. Dangel, S. Schaffer, and B. J. Eikmanns. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186:2798-2809. [PMC free article] [PubMed] [Google Scholar]

152. Gerstmeir, R., V. F. Wendisch, S. Schnicke, H. Ruan, M. Farwick, D. Reinscheid, and B. J. Eikmanns. 2003. Acetate metabolism and its regulation in Corynebacterium glutamicum. J. Biotechnol. 104:99-122. [PubMed] [Google Scholar]

153. Gimenez, R., M. F. Nunez, J. Badia, J. Aguilar, and L. Baldoma. 2003. The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J. Bacteriol. 185:6448-6455. [PMC free article] [PubMed] [Google Scholar]

154. Glasemacher, J., A. K. Bock, R. Schmid, and P. Schonheit. 1997. Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus. Eur. J. Biochem. 244:561-567. [PubMed] [Google Scholar]

155. Gonzalez-Gil, G., R. Kahmann, and G. Muskhelishvili. 1998. Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J. 17:2877-2885. [PMC free article] [PubMed] [Google Scholar]

156. Goodier, R. I., and B. M. Ahmer. 2001. SirA orthologs affect both motility and virulence. J. Bacteriol. 183:2249-2258. [PMC free article] [PubMed] [Google Scholar]

157. Gottschalk, G. 1985. Bacterial metabolism, 2nd ed. Springer-Verlag, New York, N.Y.

158. Gourse, R. L., W. Ross, and T. Gaal. 2000. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol. Microbiol. 37:687-695. [PubMed] [Google Scholar]

159. Grabau, C., and J. E. J. Cronan. 1984. Molecular cloning of the gene (poxB) encoding the pyruvate oxidase of Escherichia coli, a lipid-activated enzyme. J. Bacteriol. 160:1088-1092. [PMC free article] [PubMed] [Google Scholar]

160. Gray, C. T., J. W. T. Wimpenny, and W. R. Mossman. 1966. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Kreb's cycle enzymes in Escherichia coli. Biochim. Biophys. Acta 117:33-41. [PubMed] [Google Scholar]

161. Green, J., and M. Baldwin. 1997. HlyX, the FNR homologue of Actinobacillus pleuropneumoniae, is a [4Fe-4S]-containing oxygen-responsive transcription regulator that anaerobically activates FNR-dependent class I promoters via an enhanced AR1 contact. Mol. Microbiol. 24:593-605. [PubMed] [Google Scholar]

162. Grozinger, C. M., and S. L. Schreiber. 2002. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol. 9:3-16. [PubMed] [Google Scholar]

163. Grundy, F. H., D. A. Waters, S. H. G. Allen, and T. M. Henkin. 1993. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol. Microbiol. 10:259-271. [PubMed] [Google Scholar]

164. Grundy, F. H., D. A. Waters, S. H. G. Allen, and T. M. Henkin. 1993. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J. Bacteriol. 175:7348-7355. [PMC free article] [PubMed] [Google Scholar]

165. Grundy, F. J., A. J. Turinsky, and T. M. Henkin. 1994. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J. Bacteriol. 176:4527-4533. [PMC free article] [PubMed] [Google Scholar]

166. Guarente, L. 2000. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14:1021-1026. [PubMed] [Google Scholar]

167. Guest, J. R., S. J. Angier, and G. C. Russell. 1989. Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Ann. N. Y. Acad. Sci. 573:76-99. [PubMed] [Google Scholar]

168. Guest, J. R., and G. C. Russell. 1992. Complexes and complexities of the citric acid cycle in Escherichia coli. Curr. Top. Cell. Regul. 33:231-247. [PubMed] [Google Scholar]

169. Gulick, A. M., V. J. Starai, A. R. Horswill, K. M. Homick, and J. C. Escalante- Semerena. 2003. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866-2873. [PubMed] [Google Scholar]

170. Gunsalus, R. P., and S. J. Park. 1994. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res. Microbiol. 145:437-450. [PubMed] [Google Scholar]

171. Gupta, S., and D. P. Clark. 1989. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. J. Bacteriol. 171:3650-3655. [PMC free article] [PubMed] [Google Scholar]

172. Hahm, D. H., J. Pan, and J. S. Rhee. 1994. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl. Microbiol. Biotechnol. 42:100-107. [PubMed] [Google Scholar]

173. Haldimann, A., S. Fisher, L. Daniels, C. Walsh, and B. Wanner. 1997. Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS-VanR two-component regulatory system in Escherichia coli K- 12. J. Bacteriol. 179:5903-5913. [PMC free article] [PubMed] [Google Scholar]

174. Han, K., H. C. Lim, and J. Hong. 1992. Acetic acid formation in Escherichia coli fermentation. Biotechnol. Bioeng. 39:663-671. [PubMed] [Google Scholar]

175. Han, M.-J., S. S. Yoon, and S. Y. Lee. 2001. Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J. Bacteriol. 183:301-308. [PMC free article] [PubMed] [Google Scholar]

176. Hansen, R. G., and U. Henning. 1966. Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochim. Biophys. Acta 122:355-358. [PubMed] [Google Scholar]

177. Hansen, T., and P. Schonheit. 2000. Purification and properties of the first-identified, archaeal, ATP-dependent 6-phosphofructokinase, an extremely thermophilic non- allosteric enzyme, from the hyperthermophile Desulfurococcus amylolyticus. Arch. Microbiol. 173:103-109. [PubMed] [Google Scholar]

178. Hanson, T. S., V. R. Srinivasan, and H. O. Halvorson. 1963. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells. J. Bacteriol. 85:451-460. [PMC free article] [PubMed] [Google Scholar]

179. Harms, C., U. Ludwig, and J. R. Andreesen. 1998. Sarcosine reductase of Tissierella creatinophila: purification and characterization of its components. Arch. Microbiol. 170:442-450. [PubMed] [Google Scholar]

180. Hasty, P. 2001. The impact energy metabolism and genome maintenance have on longevity and senescence: lessons from yeast to mammals. Mech. Ageing Dev. 122:1651-1662. [PubMed] [Google Scholar]

181. Head, C. G., A. Tardy, and L. J. Kenney. 1998. Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. J. Mol. Biol. 281:857-870. [PubMed] [Google Scholar]

182. Heermann, R., K. Altendorf, and K. Jung. 2003. The N-terminal input domain of the sensor kinase KdpD of Escherichia coli stabilizes the interaction between the cognate response regulator KdpE and the corresponding DNA-binding site. J. Biol. Chem. 278:51277-51284. [PubMed] [Google Scholar]

183. Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigmaS (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373-395. [PMC free article] [PubMed] [Google Scholar]

184. Henkin, T. M. 1996. The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol. Lett. 135:9-15. [PubMed] [Google Scholar]

185. Henkin, T. M., F. J. Grundy, W. L. Nicholson, and G. H. Chambliss. 1991. Catabolite repression of the α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors. Mol. Microbiol. 5:575-584. [PubMed] [Google Scholar]

186. Hesslinger, C., S. A. Fairhurst, and G. Sawers. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27:477-492. [PubMed] [Google Scholar]

187. Heyde, M., P. Laloi, and R. Portalier. 2000. Involvement of carbon source and acetyl phosphate in the external-pH-dependent expression of porin genes in Escherichia coli. J. Bacteriol. 182:198-202. [PMC free article] [PubMed] [Google Scholar]

188. Hickey, M. W., A. J. Hillier, and G. R. Jago. 1983. Metabolism of pyruvate and citrate in lactobacilli. Aust. J. Biol. Sci. 36:487-496. [PubMed] [Google Scholar]

189. Hiesinger, M., C. Wagner, and H.-J. Schuller. 1997. The acetyl-CoA synthetase gene ACS2 of the yeast Saccharomyces cerevisiae is coregulated with structural genes of fatty acid biosynthesis by the transcriptional activators Ino2p and Ino4p. FEBS Lett. 415:16-20. [PubMed] [Google Scholar]

190. Hiratsu, K., A. Nakata, H. Shinagawa, and K. Makino. 1995. Autophosphorylation and activation of transcriptional activator PhoB of Escherichia coli by acetyl phosphate in vitro. Gene 161:7-10. [PubMed] [Google Scholar]

191. Hoch, J. A., and Silhavy, T. J. 1995. Two-component signal transduction. ASM Press, Washington, D.C.

192. Hoffman, T., N. Frankenberg, M. Marino, and D. Jahn. 1998. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J. Bacteriol. 180:186-189. [PMC free article] [PubMed] [Google Scholar]

193. Hollywood, N., and H. W. Doelle. 1976. Effect of specific growth rate and glucose concentration on growth and glucose metabolism of Escherichia coli K-12. Microbios 17:23-33. [PubMed] [Google Scholar]

194. Holman, T. R., Wu, Z., Wanner, B. L., and Walsh, C. T. 1994. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33:4625-4631. [PubMed] [Google Scholar]

195. Holms, H. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19:85-116. [PubMed] [Google Scholar]

196. Holms, W. H. 1986. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr. Top. Cell. Regul. 28:59-105. [PubMed] [Google Scholar]

197. Hong, J.-S., and A. G. Hunt. 1980. The role of acetylphosphate in active transport. J. Supramol. Struct. 4:77. [Google Scholar]

198. Hong, J. S., A. G. Hunt, P. S. Masters, and M. A. Lieberman. 1979. Requirements of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli. Proc. Natl. Acad. Sci. USA 76:1213-1217. [PMC free article] [PubMed] [Google Scholar]

199. Hormann, K., and J. R. Andereesen. 1989. Reductive cleavage of sarcosine and betaine by Eubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch. Microbiol. 153:50-59. [Google Scholar]

200. Horswill, A. R., and J. C. Escalante-Semerena. 2002. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Biochemistry 41:2379-2387. [PubMed] [Google Scholar]

201. Horswill, A. R., and J. C. Escalante-Semerena. 1999. The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology 145:1381-1388. [PubMed] [Google Scholar]

202. Horton, J. D., J. L. Goldstein, and M. S. Brown. 2002. SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harbor Symp. Quant. Biol. 67:491-498. [PubMed] [Google Scholar]

203. Hoyt, J., and H. Reeves. 1988. In vivo phosphorylation of isocitrate lyase from Escherichia coli. Biochem. Biophys. Res. Commun. 153:875-880. [PubMed] [Google Scholar]

204. Huang, M., F. B. Oppermann-Sanio, and A. Steinbuchel. 1999. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J. Bacteriol. 181:3837-3841. [PMC free article] [PubMed] [Google Scholar]

205. Hubschmann, T., H. J. M. M. Jorissen, T. Borner, W. Gartner, and N. Tandeau de Marsac. 2001. Phosphorylation of proteins in the light-dependent signalling pathway of a filamentous cyanobacterium. Eur. J. Biochem. 268:3383-3389. [PubMed] [Google Scholar]

206. Hueck, C. J., and W. Hillen. 1995. Catabolite repression in Bacillus subtilis: a global mechanism for the gram-positive bacteria? Mol. Microbiol. 15:395-401. [PubMed] [Google Scholar]

207. Hueck, C. J., W. Hillen, and M. H. Saier, Jr. 1994. Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res. Microbiol. 145:503-518. [PubMed] [Google Scholar]

208. Hunt, A. G. 1982. The energetics of osmotic shock-sensitive active transport in Escherichia coli: studies in whole cells and isolated membrane vesicles. PhD thesis. Brandeis, Waltham, Mass.

209. Hunt, A. G., and J.-S. Hong. 1983. Properties and characterization of binding protein dependent active transport of glutamine in isolated membrane vesicles of Escherichia coli. Biochemistry 22:844-850. [PubMed] [Google Scholar]

210. Ikeda, Y., J. Yamamoto, M. Okamura, T. Fujino, S. Takahashi, K. Takeuchi, T. F. Osborne, T. T. Yamamoto, S. Ito, and J. Sakai. 2001. Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1. J. Biol. Chem. 276:34259-34269. [PubMed] [Google Scholar]

211. Inouye, M., R. Dutta, and Y. Zhu. 2002. Regulation of porins in Escherichia coli by the osmosensing histidine kinase/phosphatase EnvZ, p. 25-46. In M. Inouye and R. Dutta (ed.), Histidine kinases in signal transduction. Academic Press, Ltd., London, United Kingdom.

212. Iuchi, S., and E. C. Lin. 1988. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. USA 85:1888-1892. [PMC free article] [PubMed] [Google Scholar]

213. Jackowski, S. 1996. Biosynthesis of pantothenic acid and coenzyme A, p. 687-694. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. American ASM Press, Washington, D.C.

214. Jackowski, S., and C. O. Rock. 1986. Consequences of reduced intracellular coenzyme A content in Escherichia coli. J. Bacteriol. 166:866-871. [PMC free article] [PubMed] [Google Scholar]

215. Jackowski, S., and C. O. Rock. 1984. Metabolism of 4′-phosphopantetheine in Escherichia coli. J. Bacteriol. 158:115-120. [PMC free article] [PubMed] [Google Scholar]

216. Jackowski, S., and C. O. Rock. 1981. Regulation of coenzyme A biosynthesis. J. Bacteriol. 148:926-932. [PMC free article] [PubMed] [Google Scholar]

217. Janausch, I. G., I. Garcia-Moreno, D. Lehnen, Y. Zeuner, and G. Unden. 2004. Phosphorylation and DNA binding of the regulator DcuR of the fumarate-responsive two-component system DcuSR of Escherichia coli. Microbiology 150:877-883. [PubMed] [Google Scholar]

218. Janiak-Spens, F., J. M. Sparling, M. Gurfinkel, and A. H. West. 1999. Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. J. Bacteriol. 181:411-417. [PMC free article] [PubMed] [Google Scholar]

219. Jensen, E. B., and S. Carlsen. 1990. Production of recombinant human growth hormone in Escherichia coli. Expression of different precursors and physiological effects of glucose, acetate and salts. Biotechnol. Bioeng. 36:1-11. [PubMed] [Google Scholar]

220. Johannes, E., D. M. Barnhart, and J. L. Slonczewski. 2004. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli. J. Bacteriol. 186:192-199. [PMC free article] [PubMed] [Google Scholar]

221. Jolly, C. A., H. Chao, A. B. Kier, J. T. Billheimer, and F. Schroeder. 2000. Sterol carrier protein-2 suppresses microsomal acyl-CoA hydrolysis. Mol. Cell. Biochem. 205:83-90. [PubMed] [Google Scholar]

222. Jones, B. E., V. Dossonnet, E. Kuster, W. Hillen, J. Deutscher, and R. E. Klevit. 1997. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J. Biol. Chem. 272:26530-26535. [PubMed] [Google Scholar]

223. Kaiser, M., and G. Sawers. 1994. Pyruvate formate-lyase is not essential for nitrate respiration by Escherichia coli. FEMS Microbiol. Lett. 117:163-168. [PubMed] [Google Scholar]

224. Kakuda, H., K. Hosono, K. Shiroishi, and S. Ichihara. 1994. Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J. Biochem. 116:916-922. [PubMed] [Google Scholar]

225. Kakuda, H., K. Shiroishi, K. Hosono, and S. Ichihara. 1994. Construction of Pta-Ack pathway deletion mutants of Escherichia coli and characteristic growth profiles of the mutants in a rich medium. Biosci. Biotechnol. Biochem. 58:2232-2235. [PubMed] [Google Scholar]

226. Kao, K. C., Y.-L. Yang, R. Boscolo, C. Sabatti, V. Roychowdhury, and J. C. Liao. 2004. Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl. Acad. Sci. USA 101:641-646. [PMC free article] [PubMed] [Google Scholar]

227. Karan, D., J. R. David, and P. Capy. 2001. Molecular evolution of the AMP-forming Acetyl-CoA synthetase. Gene 265:95-101. [PubMed] [Google Scholar]

228. Kasahara, M., and M. Ohmori. 1999. Activation of a cyanobacterial adenylate cyclase, CyaC, by autophosphorylation and a subsequent phosphotransfer reaction. J. Biol. Chem. 274:15167-15172. [PubMed] [Google Scholar]

229. Kaya, S., T. Yokoyama, Y. Hayashi, K. Taniguchi, and T. Tsuda. 1998. ATP and acetyl phosphate induces molecular events near the ATP binding site and the membrane domain of Na+,K+-ATPase. The tetrameric nature of the enzyme. J. Biol. Chem. 273:24334-24338. [PubMed] [Google Scholar]

230. Ke, J., R. H. Behal, S. L. Back, B. J. Nikolau, E. S. Wurtele, and D. J. Oliver. 2000. The role of pyruvate dehydrogenase and acetyl-coenzyme a synthetase in fatty acid synthesis in developing arabidopsis seeds. Plant Physiol. 123:497-508. [PMC free article] [PubMed] [Google Scholar]

231. Kennedy, E. P. 2001. Hitler's gift and the era of biosynthesis. J. Biol. Chem. 276:42619-42631. [PubMed] [Google Scholar]

232. Kessler, D., and J. Knappe. 1996. Anaerobic dissimilation of pyruvate, p. 199-204. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

233. Kihara, M., and R. M. Macnab. 1981. Cytoplasmic pH mediates pH taxis and weak- acid repellent taxis of bacteria. J. Bacteriol. 145:1209-1221. [PMC free article] [PubMed] [Google Scholar]

234. Kim, C. C., and S. Falkow. 2004. Delineation of upstream signaling events in the salmonella pathogenicity island 2 transcriptional activation pathway. J. Bacteriol. 186:4694-4704. [PMC free article] [PubMed] [Google Scholar]

235. Kim, D.-J., B. Boylan, N. George, and S. Forst. 2003. Inactivation of ompR promotes precocious swarming and flhDC expression in Xenorhabdus nematophila. J. Bacteriol. 185:5290-5294. [PMC free article] [PubMed] [Google Scholar]

236. Kim, J. H., Z. T. Guvener, J. Y. Cho, K. Chung, and G. H. Chambliss. 1995. Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J. Bacteriol. 177:5129-5134. [PMC free article] [PubMed] [Google Scholar]

237. Kim, S. B., B. S. Shin, S. K. Choi, C. K. Kim, and S. H. Park. 2001. Involvement of acetyl phosphate in the in vivo activation of the response regulator ComA in Bacillus subtilis. FEMS Microbiol. Lett. 195:179-183. [PubMed] [Google Scholar]

238. Kim, S. K., M. R. Wilmes-Riesenberg, and B. L. Wanner. 1996. Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol. Microbiol. 22:135-147. [PubMed] [Google Scholar]

239. Kimata, K., H. Takahashi, T. Inada, P. Postma, and H. Aiba. 1997. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 94:12914-12919. [PMC free article] [PubMed] [Google Scholar]

240. Kirkpatrick, C., L. M. Maurer, N. E. Oyelakin, Y. N. Yoncheva, R. Maurer, and J. L. Slonczewski. 2001. Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J. Bacteriol. 183:6466-6477. [PMC free article] [PubMed] [Google Scholar]

241. Kleman, G. L., and W. R. Strohl. 1994. Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl. Environ. Microbiol. 60:3952-3958. [PMC free article] [PubMed] [Google Scholar]

242. Knappe, J., and G. Sawers. 1990. A radical-chemical route to acetyl-CoA: the anerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol. Rev. 75:383-398. [PubMed] [Google Scholar]

243. Knorr, R., M. A. Ehrmann, and R. F. Vogel. 2001. Cloning of the phosphotransacetylase gene from Lactobacillus sanfranciscensis and characterization of its gene product. J. Basic Microbiol. 41:339-349. [PubMed] [Google Scholar]

244. Knorr, R., M. A. Ehrmann, and R. F. Vogel. 2001. Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. Microbiol. Res. 156:267-277. [PubMed] [Google Scholar]

245. Knudsen, J., M. V. Jensen, J. K. Hansen, N. J. Faergeman, T. B. Neergaard, and B. Gaigg. 1999. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling. Mol. Cell. Biochem. 192:95-103. [PubMed] [Google Scholar]

246. Kornberg, H. L. 1966. The role and control of the glyoxylate cycle in Escherichia coli. Biochem. J. 99:1-11. [PMC free article] [PubMed] [Google Scholar]

247. Kouzarides, T. 2000. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19:1176-1179. [PMC free article] [PubMed] [Google Scholar]

248. Kravanja, M., R. Engelmann, V. Dossonnet, M. Bluggel, H. E. Meyer, R. Frank, A. Galinier, J. Deutscher, N. Schnell, and W. Hengstenberg. 1999. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol. Microbiol. 31:59-66. [PubMed] [Google Scholar]

249. Kumari, S., C. M. Beatty, D. F. Browning, S. J. Busby, E. J. Simel, G. Hovel-Miner, and A. J. Wolfe. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182:4173-4179. [PMC free article] [PubMed] [Google Scholar]

250. Kumari, S., E. Simel, and A. J. Wolfe. 2000. Sigma70 is the principal sigma factor responsible for the transcription of acs, which encodes acetyl-CoA synthetase in Escherichia coli. J. Bacteriol. 182:551-554. [PMC free article] [PubMed] [Google Scholar]

251. Kumari, S., R. Tishel, M. Eisenbach, and A. J. Wolfe. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177:2878-2886. [PMC free article] [PubMed] [Google Scholar]

252. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, et al. 1998. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249-256. [PubMed] [Google Scholar]

253. Kuster, S., E. J. Luesink, W. M. de Vos, and W. Hillen. 1996. Immunological crossreactivity to catabolite control protein CcpA from Bacillus megaterium is found in many gram-positive bacteria. FEMS Microbiol. Lett. 139:109-115. [PubMed] [Google Scholar]

254. Kwan, H. S., H. W. Chui, and K. K. Wong. 1988. ack::Mu d1-8 (Apr lac) operon fusions of Salmonella typhimurium LT-2. Mol. Gen. Genet. 211:183-185. [PubMed] [Google Scholar]

255. Kwon, Y. M., and S. C. Ricke. 1998. Induction of acid resistance of Salmonella typhimurium by exposure to short-chain fatty acids. Appl. Environ. Microbiol. 64:3458-3463. [PMC free article] [PubMed] [Google Scholar]

256. Lambert, L., K. Abshire, D. Blankenhorn, and J. Slonczewski. 1997. Proteins induced in Escherichia coli by benzoic acid. J. Bacteriol. 179:7595-7599. [PMC free article] [PubMed] [Google Scholar]

257. LaPorte, D., P. Thorness, and D. Koshland, Jr. 1985. Compensatory phosphorylation of isocitrate dehydrogenase, a mechanism for adaption to the intracellular environment. J. Biol. Chem. 260:10563-10568. [PubMed] [Google Scholar]

258. LaPorte, D. C., and D. E. Koshland, Jr. 1983. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. Nature 305:286-290. [PubMed] [Google Scholar]

259. Latimer, M. T., and J. G. Ferry. 1993. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila. J. Bacteriol. 175:6822-6829. [PMC free article] [PubMed] [Google Scholar]

260. Lawhon, S. D., R. Maurer, M. Suyemoto, and C. Altier. 2002. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 46:451-464. [PubMed] [Google Scholar]

261. Lee, A. K., C. S. Detweiler, and S. Falkow. 2000. Ompr regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J. Bacteriol. 182:771-781. [PMC free article] [PubMed] [Google Scholar]

262. Lee, J.-H., D.-E. Lee, B.-U. Lee, and H.-S. Kim. 2003. Global analyses of transcriptomes and proteomes of a parent strain and an l-threonine-overproducing mutant strain. J. Bacteriol. 185:5442-5451. [PMC free article] [PubMed] [Google Scholar]

263. Lee, S. Y. 1996. High cell density culture of Escherichia coli. Trends Biotechnol. 14:98-105. [PubMed] [Google Scholar]

264. Lee, T.-Y., K. Makino, H. Shinagawa, and A. Nakata. 1990. Overproduction of acetate kinase activates the phosphate regulon in the absence of the phoR and phoM functions in Escherichia coli. J. Bacteriol. 172:2245-2249. [PMC free article] [PubMed] [Google Scholar]

265. Lehninger, A. L. 1975. Biochemistry, 2nd ed. Worth Publishers, Inc., New York, N.Y.

266. Lesley, J. A., and C. D. Waldburger. 2003. Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme A. J. Bacteriol. 185:2563-2570. [PMC free article] [PubMed] [Google Scholar]

267. Leuchtenberger, W. 1996. Amino acids—technical production and use, p. 465-502. In H. J. Rehm, G. Reed, A. Puhler, P. Stadler, and M. Roehr (ed.), Biotechnology, vol. 6. VCH Verlagsgesellschaft, Weinheim, Germany. [Google Scholar]

268. Li, J., S. Kustu, and V. Stewart. 1994. In vitro interaction of nitrate-responsive regulatory protein NarL with DNA target sequences in the fdnG, narG, narK and frdA operon control regions of Escherichia coli K-12. J. Mol. Biol. 241:150-165. [PubMed] [Google Scholar]

269. Liao, J. D., S.-Y. Hou, and Y.-P. Chao. 1996. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52:129-140. [PubMed] [Google Scholar]

270. Lin, J., I. S. Lee, J. Frey, J. L. Slonczewski, and J. W. Foster. 1995. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 177:4097-4104. [PMC free article] [PubMed] [Google Scholar]

271. Lipmann, F. 1941. Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1:99-162.

272. Liu, J. H., M. J. Lai, S. Ang, J. C. Shu, P. C. Soo, Y. T. Horng, W. C. Yi, H. C. Lai, K. T. Luh, S. W. Ho, and S. Swift. 2000. Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J. Biomed. Sci. 7:475-483. [PubMed] [Google Scholar]

273. Liu, X., and T. Ferenci. 2001. An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology 147:2981-2989. [PubMed] [Google Scholar]

274. Liu, X., and T. Ferenci. 1998. Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J. Bacteriol. 180:3917-3922. [PMC free article] [PubMed] [Google Scholar]

275. Loh, J., M. Garcia, and G. Stacey. 1997. NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum. J. Bacteriol. 179:3013-3020. [PMC free article] [PubMed] [Google Scholar]

276. Loikkanen, I., S. Haghighi, S. Vainio, and A. Pajunen. 2002. Expression of cytosolic acetyl-CoA synthetase gene is developmentally regulated. Mech. Dev. 115:139-141. [PubMed] [Google Scholar]

277. Luby-Phelps, K. 2000. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192:189-221. [PubMed] [Google Scholar]

278. Luby-Phelps, K. 1994. Physical properties of cytoplasm. Curr. Opin. Cell Biol. 6:3-9. [PubMed] [Google Scholar]

279. Lukat, G. S., W. R. McCleary, A. M. Stock, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89:718-722. [PMC free article] [PubMed] [Google Scholar]

280. Luli, G. W., and W. R. Strohl. 1990. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl. Environ. Microbiol. 56:1004-1011. [PMC free article] [PubMed] [Google Scholar]

281. Luong, A., V. C. Hannah, M. S. Brown, and J. L. Goldstein. 2000. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 275:26458-26466. [PubMed] [Google Scholar]

282. Lynch, A. S., and Lin, E. C. C. 1996. Responses to molecular oxygen, p. 1526-1538. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

283. Macfarlane, S., A. J. McBain, and G. T. Macfarlane. 1997. Consequences of biofilm and sessile growth in the large intestine. Adv. Dent. Res. 11:59-68. [PubMed] [Google Scholar]

284. Mackie, R., A. Sghir, and H. R. Gaskins. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69:1035S-1045S. [PubMed] [Google Scholar]

285. Mai, X., and M. Adams. 1996. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178:5897-5903. [PMC free article] [PubMed] [Google Scholar]

286. Majewski, R. A., and M. M. Domach. 1990. Simple constrained optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35:732-738. [PubMed] [Google Scholar]

287. Makino, K., M. Amemura, S.-K. Kim, H. Shinagawa, and A. Hakata. 1992. Signal transduction of the phosphate regulon in Escherichia coli mediated by phosphorylation. p. 191-200. In S. Papa, A. Azzi, and J. M. Tager (ed.), Adenine nucleotides in cellular energy transfer and signal transduction. Birkhaeuser Verlag, Basel, Switzerland.

288. Makino, K., H. Shinagawa, M. Amemura, S. Kimura, A. Nakata, and A. Ishihama. 1988. Regulation of the phosphate regulon of Escherichia coli: activation of pstS transcription by PhoB protein in vitro. J. Mol. Biol. 203:85-95. [PubMed] [Google Scholar]

289. Marino, M., H. C. Ramos, T. Hoffmann, P. Glaser, and D. Jahn. 2001. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD). J. Bacteriol. 183:6815-6821. [PMC free article] [PubMed] [Google Scholar]

290. Marshall, F. A., S. L. Messenger, N. R. Wyborn, J. R. Guest, H. Wing, S. J. Busby, and J. Green. 2001. A novel promoter architecture for microaerobic activation by the anaerobic transcription factor FNR. Mol. Microbiol. 39:747-753. [PubMed] [Google Scholar]

291. Matsubara, M., and T. Mizuno. 1999. EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. Biosci. Biotechnol. Biochem. 63:408-414. [PubMed] [Google Scholar]

292. Matsubara, M., and T. Mizuno. 2000. The SixA phospho-histidine phosphatase modulates the ArcB phosphorelay signal transduction in Escherichia coli. FEBS Lett. 470:118-124. [PubMed] [Google Scholar]

293. Matsushika, A., and T. Mizuno. 1998. A dual-signaling mechanism mediated by the ArcB hybrid sensor kinase containing the histidine-containing phosphotransfer domain in Escherichia coli. J. Bacteriol. 180:3973-3977. [PMC free article] [PubMed] [Google Scholar]

294. Matsuyama, A., H. Yamamoto-Otake, J. Hewitt, R. T. A. MacGillivray, and E. Nakano. 1994. Nucleotide sequence of the phosphotransacetylase gene of Escherichia coli strain K12. Biochim. Biophys. Acta 1219:559-562. [PubMed] [Google Scholar]

295. Mayover, T. L., C. J. Halkides, and R. C. Stewart. 1999. Kinetic characterization of CheY phosphorylation reactions: comparison of P-CheA and small-molecule phosphodonors. Biochemistry 38:2259-2271. [PubMed] [Google Scholar]

296. McCleary, W. R. 1996. The activation of PhoB by acetylphosphate. Mol. Microbiol. 20:1155-1163. [PubMed] [Google Scholar]

297. McCleary, W. R., and J. B. Stock. 1994. Acetyl phosphate and the activation of two- component response regulators. J. Biol. Chem. 269:31567-31572. [PubMed] [Google Scholar]

298. McCleary, W. R., J. B. Stock, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175:2793-2798. [PMC free article] [PubMed] [Google Scholar]

299. McLeod, S. M., and R. C. Johnson. 2001. Control of transcription by nucleoid proteins. Curr. Opin. Microbiol. 4:152-159. [PubMed] [Google Scholar]

300. McNeil, N. I. 1984. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39:338-342. [PubMed] [Google Scholar]

301. Meile, L., L. M. Rohr, T. A. Geissmann, M. Herensperger, and M. Teuber. 2001. Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J. Bacteriol. 183:2929-2936. [PMC free article] [PubMed] [Google Scholar]

302. Merkler, I., and J. Retey. 1981. Stereochemical investigation of the phosphoketolase reaction. The formation of chiral [2H1,3H]acetyl phosphate. Eur. J. Biochem. 120:593-597. [PubMed] [Google Scholar]

303. Mevissen-Verhage, E. A. E., V. H. Marcelis, M. N. De Vos, W. C. M. Harmsen-Vann Amerongen, and J. Verhoef. 1987. Bfidobacterium, Bacteroides and Clostridium spp. in fecal samples from breast-fed and bottle-fed infants with and without iron supplement. J. Clin. Microbiol. 25:285-289. [PMC free article] [PubMed] [Google Scholar]

304. Meyer, M., P. Dimroth, and M. Bott. 1997. In vitro binding of the response regulator CitB and of its carboxy-terminal domain to A + T-rich DNA target sequences in the control region of the divergent citC and citS operons of Klebsiella pneumoniae. J. Mol. Biol. 269:719-731. [PubMed] [Google Scholar]

305. Meyer, M., K. Granderath, and J. R. Andreesen. 1995. Purification and characterization of protein PB of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium acidaminophilum. Eur. J. Biochem. 234:184-191. [PubMed] [Google Scholar]

306. Mitsuoka, T. 1996. Intestinal flora and human health. Asia Pacific J. Clin. Nutr. 5:2-9. [PubMed] [Google Scholar]

307. Miwa, Y., M. Saikawa, and Y. Fujita. 1994. Possible function and some properties of the CcpA protein of Bacillus subtilis. Microbiology 140:2567-2575. [PubMed] [Google Scholar]

308. Miyake, M., K. Kataoka, M. Shirai, and Y. Asada. 1997. Control of poly-beta- hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J. Bacteriol. 179:5009-5013. [PMC free article] [PubMed] [Google Scholar]

309. Miyake, M., C. Miyamoto, J. Schnackenberg, R. Kurane, and Y. Asada. 2000. Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Appl. Biochem. Biotechnol. 84-86:1039-1044. [PubMed] [Google Scholar]

310. Miyake, M., K. Takase, M. Narato, E. Khatipov, J. Schnackenberg, M. Shirai, R. Kurane, and Y. Asada. 2000. Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Appl. Biochem. Biotechnol. 84-86:991-1002. [PubMed] [Google Scholar]

311. Moazed, D. 2001. Common themes in mechanisms of gene silencing. Mol. Cell 8:489-498. [PubMed] [Google Scholar]

312. Moir-Blais, T. R., F. J. Grundy, and T. M. Henkin. 2001. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site. J. Bacteriol. 183:2389-2393. [PMC free article] [PubMed] [Google Scholar]

313. Mortensen, P. B., and M. R. Clausen. 1996. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. Suppl. 216:132-148. [PubMed] [Google Scholar]

314. Muffler, A., S. Bettermann, M. Haushalter, A. Horlein, U. Neveling, M. Schramm, and O. Sorgenfrei. 2002. Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J. Biotechnol. 98:255-268. [PubMed] [Google Scholar]

315. Murphy, M. G., L. O'Connor, D. Walsh, and S. Condon. 1985. Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch. Microbiol. 141:75-79. [PubMed] [Google Scholar]

316. Musfeldt, M., M. Selig, and P. Schonheit. 1999. Acetyl coenzyme A synthetase (ADP forming) from the hyperthermophilic archaeon Pyrococcus furiosus: identification, cloning, separate expression of the encoding genes, acdAI and acdBI, in Escherichia coli, and in vitro reconstitution of the active heterotetrameric enzyme from its recombinant subunits. J. Bacteriol. 181:5885-5888. [PMC free article] [PubMed] [Google Scholar]

317. Nakano, M. M., Y. P. Dailly, P. Zuber, and D. P. Clark. 1997. Characterization of anaerobic fermentative growth in Bacillus subtilis: identification of fermentation end products and genes required for the growth. J. Bacteriol. 179:6749-6755. [PMC free article] [PubMed] [Google Scholar]

318. Nakayama, S.-I., and H. Watanabe. 1998. Identification of cpxR as a positive regulator essential for expression of the Shigella sonnei virF gene. J. Bacteriol. 180:3522-3528. [PMC free article] [PubMed] [Google Scholar]

319. Negre, D., C. Oudot, J.-F. Prost, K. Murakami, A. Ishihama, A. J. Cozzone, and J.-C. Cortay. 1998. FruR-mediated transcriptional activation at the ppsA promoter of Escherichia coli. J. Mol. Biol. 276:355-365. [PubMed] [Google Scholar]

320. Neidhardt, F. C., J. L. Ingraham, and M. Schaechter. 1990. Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Inc., Sunderland, Mass.

321. Ninfa, A. J. 1996. Regulation of gene transcription by extracellular stimuli. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella cellular and molecular biology. ASM Press, Washington, D.C.

322. Ninfa, A. J., P. Jiang, M. R. Atkinson, and J. A. Peliska. 2000. Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr. Top. Cell Regul. 36:31-75. [PubMed] [Google Scholar]

323. Noronha, S. B., H. J. Yeh, T. F. Spande, and J. Shiloach. 2000. Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using (13)C- NMR/MS. Biotechnol. Bioeng. 68:316-327. [PubMed] [Google Scholar]

324. Nyström, T. 1994. The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol. Microbiol. 12:833-843. [PubMed] [Google Scholar]

325. Nyström, T., and F. C. Neidhardt. 1993. Isolation and properties of a mutant of Escherichia coli with an insertional inactivation of the uspA gene, which encodes a universal stress protein. J. Bacteriol. 175:3949-3956. [PMC free article] [PubMed] [Google Scholar]

326. Ogino, T., Y. Arata, and S. Fujiwara. 1980. Proton correlation nuclear magnetic resonance study of metabolic regulations and pyruvate transport in anaerobic Escherichia coli cells. Biochemistry 19:3684-3691. [PubMed] [Google Scholar]

327. Ogino, T., M. Matsubara, N. Kato, Y. Nakamura, and T. Mizuno. 1998. An Escherichia coli protein that exhibits phosphohistidine phosphatase activity towards the HPt domain of the ArcB sensor involved in the multistep His-Asp phosphorelay. Mol. Microbiol. 27:573-585. [PubMed] [Google Scholar]

328. Oh, M. K., and J. C. Liao. 2000. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol. Prog. 16:278-286. [PubMed] [Google Scholar]

329. Oh, M.-K., L. Rohlin, K. C. Kao, and J. C. Liao. 2002. Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 277:13175-13183. [PubMed] [Google Scholar]

330. Oshima, T., H. Aiba, Y. Masuda, S. Kanaya, M. Sugiura, B. L. Wanner, H. Mori, and T. Mizuno. 2002. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol. Microbiol. 46:281-291. [PubMed] [Google Scholar]

331. Palacios, S., V. J. Starai, and J. C. Escalante-Semerena. 2003. Propionyl coenzyme a is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-Propanediol. J. Bacteriol. 185:2802-2810. [PMC free article] [PubMed] [Google Scholar]

332. Pan, J. G., J. S. Rhee, and J. M. Lebeault. 1987. Physiological constraints in increasing biomass concentration of Escherichia coli in fed-batch culture. Biotechnol. Lett. 9:89-94. [Google Scholar]

333. Pantazaki, A. A., M. G. Tambaka, V. Langlois, P. Guerin, and D. A. Kyriakidis. 2004. Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase. Mol. Cell. Biochem. 254:173-183. [PubMed] [Google Scholar]

334. Pardee, A. B., and L. S. Prestidge. 1955. Induced formation of serine and threonine deaminases by Escherichia coli. J. Bacteriol. 70:667-674. [PMC free article] [PubMed] [Google Scholar]

335. Park, S.-J., G. Chao, and R. P. Gunsalus. 1997. Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCBAB promoter. J. Bacteriol. 179:4138-4142. [PMC free article] [PubMed] [Google Scholar]

336. Park, S. J., P. A. Cotter, and R. P. Gunsalus. 1995. Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol. 177:6652-6656. [PMC free article] [PubMed] [Google Scholar]

337. Park, S. J., and R. P. Gunsalus. 1995. Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products. J. Bacteriol. 177:6255-6262. [PMC free article] [PubMed] [Google Scholar]

338. Park, S. J., J. McCabe, J. Turna, and R. P. Gunsalus. 1994. Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J. Bacteriol. 176:5086-5092. [PMC free article] [PubMed] [Google Scholar]

339. Park, S. J., C. P. Tseng, and R. P. Gunsalus. 1995. Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol. Microbiol. 15:473-482. [PubMed] [Google Scholar]

340. Patnaik, R., W. D. Roof, R. F. Young, and J. C. Liao. 1992. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J. Bacteriol. 174:7527-7532. [PMC free article] [PubMed] [Google Scholar]

341. Peekhaus, N., and T. Conway. 1998. What's for dinner? Entner-Doudoroff metabolism in Escherichia coli. J. Bacteriol. 180:3495-3502. [PMC free article] [PubMed] [Google Scholar]

342. Peng, L., and K. Shimizu. 2003. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl. Microbiol. Biotechnol. 61:163-178. [PubMed] [Google Scholar]

343. Pericone, C. D., S. Park, J. A. Imlay, and J. N. Weiser. 2003. Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the Fenton reaction. J. Bacteriol. 185:6815-6825. [PMC free article] [PubMed] [Google Scholar]

344. Perrot, F., M. Hebraud, R. Charlionet, G. Junter, and T. Jouenne. 2000. Protein patterns of gel-entrapped Escherichia coli cells differ from those of free-floating organisms. Electrophoresis 21:645-653. [PubMed] [Google Scholar]

345. Pettijohn, D. 1996. The nucleoid, p. 158-166. In F. C. Neidhardt, R. Curtiss, III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

346. Phadtare, S., and M. Inouye. 2001. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J. Bacteriol. 183:1205-1214. [PMC free article] [PubMed] [Google Scholar]

347. Phue, J.-N., and J. Shiloach. 2004. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J. Biotechnol. 109:21-30. [PubMed] [Google Scholar]

348. Pittman, M. S., M. Goodwin, and D. J. Kelly. 2001. Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology 147:2493-2504. [PubMed] [Google Scholar]

349. Plumbridge, J. 2002. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr. Opin. Microbiol. 5:187-193. [PubMed] [Google Scholar]

350. Posthuma, C. C., R. Bader, R. Engelmann, P. W. Postma, W. Hengstenberg, and P. H. Pouwels. 2002. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Appl. Environ. Microbiol. 68:831-837. [PMC free article] [PubMed] [Google Scholar]

351. Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1996. Phosphoenolpyruvate:carbohydrate phosphotransferase systems, p. 1149-1174. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

352. Poulsen, L., T. Licht, C. Rang, K. Krogfelt, and S. Molin. 1995. Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J. Bacteriol. 177:5840-5845. [PMC free article] [PubMed] [Google Scholar]

353. Presecan-Siedel, E., A. Galinier, R. Longin, J. Deutscher, A. Danchin, P. Glaser, and I. Martin-Verstraete. 1999. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J. Bacteriol. 181:6889-6897. [PMC free article] [PubMed] [Google Scholar]

354. Prohinar, P., S. A. Forst, D. Reed, I. Mandic-Mulec, and J. Weiss. 2002. OmpR- dependent and OmpR-independent responses of Escherichia coli to sublethal attack by the neutrophil bactericidal/permeability increasing protein. Mol. Microbiol. 43:1493-1504. [PubMed] [Google Scholar]

355. Prüß, B. M. 1998. Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch. Microbiol. 170:141-146. [PubMed] [Google Scholar]

356. Prüß, B. M., J. W. Campbell, T. K. Van Dyk, C. Zhu, Y. Kogan, and P. Matsumura. 2003. FlhD/FlhC Is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J. Bacteriol. 185:534-543. [PMC free article] [PubMed] [Google Scholar]

357. Prüß, B. M., X. Liu, W. Hendrickson, and P. Matsumura. 2001. FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol. Lett. 197:91-97. [PubMed] [Google Scholar]

358. Prüß, B. M., and P. Matsumura. 1996. A regulator of the flagellar regulon of Escherichia coli, flhD, also affect cell division. J. Bacteriol. 178:668-674. [PMC free article] [PubMed] [Google Scholar]

359. Prüß, B. M., J. M. Nelms, C. Park, and A. J. Wolfe. 1994. Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J. Bacteriol. 176:2143-2150. [PMC free article] [PubMed] [Google Scholar]

360. Prüß, B. M., and A. J. Wolfe. 1994. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12:973-984. [PubMed] [Google Scholar]

361. Puchowicz, M. A., I. R. Bederman, B. Comte, D. Yang, F. David, E. Stone, K. Jabbour, D. H. Wasserman, and H. Brunengraber. 1999. Zonation of acetate labeling across the liver: implications for studies of lipogenesis by MIDA. Am. J. Physiol. Endocrinol. Metab. 277:E1022-E1027. [PubMed] [Google Scholar]

362. Quail, M. A., D. J. Haydon, and J. R. Guest. 1994. The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol. Microbiol. 12:95-104. [PubMed] [Google Scholar]

363. Rado, T. A., and J. A. Hoch. 1973. Phosphotransacetylase from Bacillus subtilis: purification and physiological studies. Biochim. Biophys. Acta 321:114-125. [PubMed] [Google Scholar]

364. Ramakrishnan, R., M. Schuster, and R. B. Bourret. 1998. Acetylation of Lys-92 enhances signaling by the chemotaxis response regulator protein CheY. Proc. Natl. Acad. Sci. USA 95:4918-4923. [PMC free article] [PubMed] [Google Scholar]

365. Ramos, H. C., T. Hoffmann, M. Marino, H. Ndjari, E. Presecan-Siedel, O. Dreesen, P. Glaser, and D. Jahn. 2000. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 182:3072-3080. [PMC free article] [PubMed] [Google Scholar]

366. Ramseier, T. M., S. Bledig, V. Michotey, R. Feghali, and M. H. Saier, Jr. 1995. The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol. Microbiol. 16:1157-1169. [PubMed] [Google Scholar]

367. Ramseier, T. M., D. Negre, J. C. Cortay, M. Scarabel, A. J. Cozzone, and M. H. Saier, Jr. 1993. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J. Mol. Biol. 234:28-44. [PubMed] [Google Scholar]

368. Reeves, R. E., L. G. Warren, B. Susskind, and H. S. Lo. 1977. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J. Biol. Chem. 252:726-731. [PubMed] [Google Scholar]

369. Reinscheid, D., S. Schnicke, D. Rittmann, U. Zahnow, H. Sahm, and B. Eikmanns. 1999. Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology 145:503-513. [PubMed] [Google Scholar]

370. Reitzer, L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol. 57:155-176. [PubMed] [Google Scholar]

371. Reitzer, L. J., and B. Magasanik. 1985. Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc. Natl. Acad. Sci. USA 82:1979-1983. [PMC free article] [PubMed] [Google Scholar]

372. Reizer, J., J. Deutscher, and M. H. Saier, Jr. 1989. Metabolite-senstive, ATP- dependent, protein kinase catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in Gram-positive bacteria. Biochemie 71:989-996. [PubMed] [Google Scholar]

373. Reizer, J., C. Hoischen, F. Tigemeyer, C. Rivolta, R. Rabus, J. Stulke, D. Karamata, M. H. Saier, Jr., and W. Hillen. 1998. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol. 27:1157-1169. [PubMed] [Google Scholar]

374. Renna, M. C., N. Najimudin, L. R. Winik, and S. A. Zahler. 1993. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175:3863-3875. [PMC free article] [PubMed] [Google Scholar]

375. Repaske, D. R., and J. Adler. 1981. Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J. Bacteriol. 145:1196-208. [PMC free article] [PubMed] [Google Scholar]

376. Reyrat, J. M., M. David, J. Batut, and P. Boistard. 1994. FixL of Rhizobium meliloti enhances the transcriptional activity of a mutant FixJD54N protein by phosphorylation of an alternate residue. J. Bacteriol. 176:1969-1976. [PMC free article] [PubMed] [Google Scholar]

377. Ricke, S. C. 2003. The gastrointestinal tract ecology of Salmonella enteritidis colonization in molting hens. Poult. Sci. 82:1003-1007. [PubMed] [Google Scholar]

378. Rigden, D. J. 2003. Unexpected catalytic site variation in phosphoprotein phosphatase homologues of cofactor-dependent phosphoglycerate mutase. FEBS Lett. 536:77-84. [PubMed] [Google Scholar]

379. Rinas, U., H. Kracke-Helm, and K. Schugerl. 1989. Glucose as a substrate in recombinant strain fermentation technology. Appl. Microbiol. Biotechnol. 31:163-167. [Google Scholar]

380. Riondet, C., R. Cachon, Y. Wache, G. Alcaraz, and C. Divies. 2000. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 182:620-626. [PMC free article] [PubMed] [Google Scholar]

381. Roe, A. J., D. McLaggan, I. Davidson, C. O'Bryne, and I. R. Booth. 1998. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J. Bacteriol. 180:767-772. [PMC free article] [PubMed] [Google Scholar]

382. Roe, A. J., C. O'Byrne, D. McLaggan, and I. R. Booth. 2002. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215-2222. [PubMed] [Google Scholar]

383. Roggiani, M., and D. Dubnau. 1993. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J. Bacteriol. 175:3182-3187. [PMC free article] [PubMed] [Google Scholar]

384. Romeo, T. 1998. Global regulation by the small RNA-binding protein CsrA and the non- coding RNA molecule CsrB. Mol. Microbiol. 29:1321-1330. [PubMed] [Google Scholar]

385. Rose, I. A., M. Grunsberg-Manago, S. R. Korey, and S. Ochoa. 1954. Enzymatic phosphorylation of acetate. J. Biol. Chem. 211:737-756. [PubMed] [Google Scholar]

386. Rossman, R., G. Sawers, and A. Bock. 1991. Mechanism of regulation of the formate- hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol. Microbiol. 5:2807-2814. [PubMed] [Google Scholar]

387. Ruff, J., K. Denger, and A. M. Cook. 2003. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem. J. 369:275-285. [PMC free article] [PubMed] [Google Scholar]

388. Russell, J. B., and F. Diez-Gonzales. 1998. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39:205-234. [PubMed] [Google Scholar]

389. Saier, M. H., Jr., and T. M. Ramseier. 1996. The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 178:3411-3417. [PMC free article] [PubMed] [Google Scholar]

390. Salmond, C. V., R. G. Kroll, and I. R. Booth. 1984. The effect of food preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol. 130:2845-2850. [PubMed] [Google Scholar]

391. Sanchez, L. B., M. Y. Galperin, and M. Muller. 2000. Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of Acyl-CoA synthetases (nucleoside diphosphate-forming). J. Biol. Chem. 275:5794-5803. [PubMed] [Google Scholar]

392. Sanchez, L. B., and M. Muller. 1996. Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett. 378:240-244. [PubMed] [Google Scholar]

393. Sanders, D. A., B. L. Gillece-Castro, A. L. Burlingame, and D. E. J. Koshland. 1992. Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J. Bacteriol. 174:5117-5122. [PMC free article] [PubMed] [Google Scholar]

394. Sato, M., K. Machida, E. Arikado, H. Saito, T. Kakegawa, and H. Kobayashi. 2000. Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl. Environ. Microbiol. 66:943-947. [PMC free article] [PubMed] [Google Scholar]

395. Schafer, T., and P. Schonheit. 1991. Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalysed by an acetyl-CoA synthetase (ADP-forming). Arch. Microbiol. 155:366-377. [Google Scholar]

396. Schafer, T., M. Selig, and P. Schonheit. 1993. Acetyl-CoA synthetase (ADP-forming) in archaea, a novel enzyme involved in acetate and ATP synthesis. Arch. Microbiol. 159:72-83. [Google Scholar]

397. Scharrer, E., and T. Lutz. 1990. Effects of short chain fatty acids and K on absorption of Mg and other cations by the colon and caecum. Z. Ernahrungswiss. 29:162-168. [PubMed] [Google Scholar]

398. Scheppach, W., E. W. Pomare, M. Elia, and J. H. Cummings. 1991. The contribution of the large intestine to blood acetate in man. Clin. Sci. (London) 80:177-182. [PubMed] [Google Scholar]

399. Schmiel, D. H., G. M. Young, and V. L. Miller. 2000. The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J. Bacteriol. 182:2314-2320. [PMC free article] [PubMed] [Google Scholar]

400. Schonheit, P., and T. Schafer. 1995. Metabolism of hyperthermophiles. World J. Microbiol. Biotechnol. 11:26-57. [PubMed] [Google Scholar]

401. Schrader, T., and J. R. Andreesen. 1992. Purification and characterization of protein PC, a component of glycine reductase from Eubacterium acidaminophilum. Eur. J. Biochem. 206:79-85. [PubMed] [Google Scholar]

402. Sedewitz, B., K. H. Schleifer, and F. Gotz. 1984. Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J. Bacteriol. 160:462-465. [PMC free article] [PubMed] [Google Scholar]

403. Sedewitz, B., K. H. Schleifer, and F. Gotz. 1984. Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum. J. Bacteriol. 160:273-278. [PMC free article] [PubMed] [Google Scholar]

404. Semenza, G. 2001. Fifty years ago: the identification of ‘active acetate’ as acetyl-CoA. FEBS Lett. 509:343-344. [PubMed] [Google Scholar]

405. Seufert, C. D., M. Graf, G. Janson, A. Kuhn, and H. D. Soling. 1974. Formation of free acetate by isolated perfused livers from normal, starved and diabetic rats. Biochem. Biophys. Res. Commun. 57:901-909. [PubMed] [Google Scholar]

406. Shen, J., and R. P. Gunsalus. 1997. Role of multiple ArcA recognition sites in anaerobic regulation of succinate dehydrogenase (sdhCDAB) gene expression in Escherichia coli. Mol. Microbiol. 26:223-236. [PubMed] [Google Scholar]

407. Shin, B.-S., S.-K. Choi, and S.-H. Park. 1999. Regulation of the Bacillus subtilis phosphotransacetylase gene. J. Biochem. (Tokyo) 126:333-339. [PubMed] [Google Scholar]

408. Shin, S., and C. Park. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177:4696-4702. [PMC free article] [PubMed] [Google Scholar]

409. Shin, S., J. Sheen, and C. Park. 1993. Suppression of high-temperature inhibition of motility due to the change in acetate metabolism in Escherichia coli K-12. Kor. J. Microbiol. 31:504-511. [Google Scholar]

410. Shin, S., S. G. Song, D. S. Lee, J. G. Pan, and C. Park. 1997. Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol. Lett. 146:103-108. [PubMed] [Google Scholar]

411. Silversmith, R. E., J. L. Appleby, and R. B. Bourret. 1997. Catalytic mechanism of phosphorylation and dephosphorylation of CheY: kinetic characterization of imidazole phosphates as phosphodonors and the role of acid catalysis. Biochemistry 36:14965-14974. [PubMed] [Google Scholar]

412. Singh-Wissmann, K., and J. G. Ferry. 1995. Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila. J. Bacteriol. 177:1699-1702. [PMC free article] [PubMed] [Google Scholar]

413. Smith, M. W., and F. C. Neidhardt. 1983. 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis. J. Bacteriol. 156:81-88. [PMC free article] [PubMed] [Google Scholar]

414. Snoep, J. L., M. J. Teixeira de Mattos, P. W. Postma, and O. M. Niejssel. 1990. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Arch. Microbiol. 154:50-55. [PubMed] [Google Scholar]

415. Soler, F., M.-I. Fortea, A. Lax, and F. Fernandez-Belda. 2002. Dissecting the hydrolytic activities of sarcoplasmic reticulum ATPase in the presence of acetyl phosphate. J. Biol. Chem. 277:38127-38132. [PubMed] [Google Scholar]

416. Sone, H., H. Shimano, Y. Sakakura, N. Inoue, M. Amemiya-Kudo, N. Yahagi, M. Osawa, H. Suzuki, T. Yokoo, A. Takahashi, K. Iida, H. Toyoshima, A. Iwama, and N. Yamada. 2002. Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am. J. Physiol. Endocrinol. Metab. 282:E222-E230. [PubMed] [Google Scholar]

417. Sourjik, V., and R. Schmitt. 1998. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:2327-2335. [PubMed] [Google Scholar]

418. Speck, E. L., and E. Freese. 1973. Control of metabolite secretion in Bacillus subtilis. J. Gen. Microbiol. 78:261-275. [PubMed] [Google Scholar]

419. Spellerberg, B., D. R. Cundell, J. Sandros, B. J. Pearce, I. Idanpaan-Heikkila, C. Rosenow, and H. R. Masure. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19:803-813. [PubMed] [Google Scholar]

420. Spencer, M. E., and J. R. Guest. 1987. Regulation of citric acid cycle genes in facultative bacteria. Microbiol. Sci. 4:164-168. [PubMed] [Google Scholar]

421. Spencer, M. E., and J. R. Guest. 1985. Transcription analysis of the sucAB, aceEF, and lpd genes of Escherichia coli. Mol. Gen. Genet. 200:145-154. [PubMed] [Google Scholar]

422. Stadtman, T., and J. Davis. 1991. Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethyl-selenoprotein A. J. Biol. Chem. 266:22147-22153. [PubMed] [Google Scholar]

423. Stadtman, T. C. 1989. Clostridial glycine reductase: protein C, the acetyl group acceptor, catalyzes the arsenate-dependent decomposition of acetyl phosphate. Proc. Natl. Acad. Sci. USA 86:7853-7856. [PMC free article] [PubMed] [Google Scholar]

424. Stancik, L. M., D. M. Stancik, B. Schmidt, D. M. Barnhart, Y. N. Yoncheva, and J. L. Slonczewski. 2002. pH-Dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184:4246-4258. [PMC free article] [PubMed] [Google Scholar]

425. Starai, V., and J. Escalante-Semerena. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol. 340:1005-1012. [PubMed] [Google Scholar]

426. Starai, V. J., I. Celic, R. N. Cole, J. D. Boeke, and J. C. Escalante-Semerena. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390-2392. [PubMed] [Google Scholar]

427. Starai, V. J., and J. C. Escalante-Semerena. 2004. Acetyl-coenzyme A synthetase (AMP forming). Cell. Mol. Life Sci. 61:2020-2030. [PubMed] [Google Scholar]

428. Starai, V. J., H. Takahashi, J. D. Boeke, and J. C. Escalante-Semerena. 2003. Short- chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545-555. [PMC free article] [PubMed] [Google Scholar]

429. Steeg, P. S., D. Palmieri, T. Ouatas, and M. Salerno. 2003. Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett. 190:1-12. [PubMed] [Google Scholar]

430. Sterri, S. H., and F. Fonnum. 1980. Acetyl-CoA synthesizing enzymes in cholinergic nerve terminals. J. Neurochem. 35:249-254. [PubMed] [Google Scholar]

431. Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183-215. [PubMed] [Google Scholar]

432. Stokes, J. L. 1949. Fermentation of glucose by suspensions of Escherichia coli. J. Bacteriol. 57:147-158. [PMC free article] [PubMed] [Google Scholar]

433. Stout, V. 1994. Regulation of capsule synthesis includes interactions of the RcsC/RcsB regulatory pair. Res. Microbiol. 145:389-392. [PubMed] [Google Scholar]

434. Stulke, J., and W. Hillen. 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2:195-201. [PubMed] [Google Scholar]

435. Summers, M. L., M. C. Denton, and T. R. McDermott. 1999. Genes coding for phosphotransacetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by phoB. J. Bacteriol. 181:2217-2224. [PMC free article] [PubMed] [Google Scholar]

436. Suzuki, K., X. Wang, T. Weilbacher, A.-K. Pernestig, O. Melefors, D. Georgellis, P. Babitzke, and T. Romeo. 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184:5130-5140. [PMC free article] [PubMed] [Google Scholar]

437. Suzuki, T. 1969. Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. Biochim. Biophys. Acta 191:559-569. [PubMed] [Google Scholar]

438. Takamura, Y., and G. Nomura. 1988. Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J. Gen. Microbiol. 134:2249-2253. [PubMed] [Google Scholar]

439. Takeda, S., A. Matsushika, and T. Mizuno. 1999. Repression of the gene encoding succinate dehydrogenase in response to glucose is mediated by the EIICB(Glc) protein in Escherichia coli. J. Biochem. (Tokyo) 126:354-360. [PubMed] [Google Scholar]

440. Tao, H., C. Bausch, C. Richmond, F. R. Blattner, and T. Conway. 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181:6425-6440. [PMC free article] [PubMed] [Google Scholar]

441. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100-180. [PMC free article] [PubMed] [Google Scholar]

442. Thomason, P. A., D. Traynor, J. B. Stock, and R. R. Kay. 1999. The RdeA-RegA system, a eukaryotic phospho-relay controlling cAMP breakdown. J. Biol. Chem. 274:27379-27384. [PubMed] [Google Scholar]

443. Thomason, P. A., D. Traynor, G. Cavet, W. T. Chang, A. J. Harwood, and R. R. Kay. 1998. An intersection of the cAMP/PKA and two-component signal transduction systems of Dictyostelium. EMBO J. 17:2838-2845. [PMC free article] [PubMed] [Google Scholar]

444. Tittmann, K., D. Proske, M. Spinka, S. Ghisla, R. Rudolph, G. Hubner, and G. Kern. 1998. Activation of thiamin diphosphate and FAD in the phosphate dependent pyruvate oxidase from Lactobacillus plantarum. J. Biol. Chem. 273:12929-12934. [PubMed] [Google Scholar]

445. Toh, H. 1990. N-terminal halves of gramicidin S synthetase 1, and tyrocidine synthetase 1 as novel members of firefly luciferase family. Protein Seq. Data Anal. 3:517-521. [PubMed] [Google Scholar]

446. Toh, H. 1991. Sequence analysis of firefly luciferase family reveals a conservative sequence motif. Protein Seq. Data Anal. 4:111-117. [PubMed] [Google Scholar]

447. Topping, D. L., and P. M. Clifton. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81:1031-1064. [PubMed] [Google Scholar]

448. Tran, V. K., R. Oropeza, and L. J. Kenney. 1999. A single amino acid substitution in the C terminus of OmpR alters DNA recognition and phosphorylation. J. Mol. Biol. 299:1257-1270. [PubMed] [Google Scholar]

449. Tsang, A., and J. Escalante-Semerena. 1996. cobB function is required for catabolism of propionate in Salmonella typhimurium LT2: evidence for existence of a substitute function for CobB within the 1,2-propanediol utilization (pdu) operon. J. Bacteriol. 178:7016-7019. [PMC free article] [PubMed] [Google Scholar]

450. Tsang, A. W., A. R. Horswill, and J. C. Escalante-Semerena. 1998. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J. Bacteriol. 180:6511-6518. [PMC free article] [PubMed] [Google Scholar]

451. Tseng, G. C., M.-K. Oh, L. Rohlin, J. C. Liao, and W. H. Wong. 2001. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids. Res. 29:2549-2557. [PMC free article] [PubMed] [Google Scholar]

452. Turinsky, A. J., F. J. Grundy, J.-H. Kim, G. H. Chambliss, and T. M. Henkin. 1998. Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter. J. Bacteriol. 180:5961-5967. [PMC free article] [PubMed] [Google Scholar]

453. Turinsky, A. J., T. R. Moir-Blais, F. J. Grundy, and T. M. Henkin. 2000. Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J. Bacteriol. 182:5611-5614. [PMC free article] [PubMed] [Google Scholar]

454. Vallari, D. S., and S. Jackowski. 1988. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J. Bacteriol. 170:3961-3966. [PMC free article] [PubMed] [Google Scholar]

455. van den Berg, M. A., P. de Jong-Gubbels, C. J. Kortland, J. P. van Dijken, J. T. Pronk, and H. Y. Steensma. 1996. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271:28953-28959. [PubMed] [Google Scholar]

456. van de Walle, M., and J. Shiloach. 1998. Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol. Bioeng. 57:71-78. [PubMed] [Google Scholar]

457. Van Dyk, T. K., and R. A. LaRossa. 1987. Involvement of ack-pta operon products in alpha-ketobutyrate metabolism by Salmonella typhimurium. Mol. Gen. Genet. 207:435-440. [PubMed] [Google Scholar]

458. Varma, A., and B. O. Paulson. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60:3724-3731. [PMC free article] [PubMed] [Google Scholar]

459. Voet, D., and J. G. Voet. 1990. Biochemistry, John Wiley & Sons, Inc., New York, N.Y.

460. Wadolkowski, E. A., D. C. Laux, and P. S. Cohen. 1988. Colonization of the streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus. Infect. Immun. 56:1030-1035. [PMC free article] [PubMed] [Google Scholar]

461. Wagner, A., S. Schultz, J. Bomke, T. Pils, W. Lehmann, and J. Knappe. 2001. YfiD of Escherichia coli and Y061 of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochem. Biophys. Res. Commun. 285:456-462. [PubMed] [Google Scholar]

462. Wagner, M., D. Sonntag, R. Grimm, A. Pich, C. Eckerskorn, B. Sohling, and J. R. Andreesen. 1999. Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Biochemical and molecular analysis. Eur. J. Biochem. 260:38-49. [PubMed] [Google Scholar]

463. Wanner, B. L. 1993. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51:47-54. [PubMed] [Google Scholar]

464. Wanner, B. L. 1992. Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria? EMBO J. 11:265-277. [PMC free article] [PubMed] [Google Scholar]

465. Wanner, B. L. 1996. Phosphorus assimilation and control of the phosphate regulon, p. 1357-1381. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

466. Wanner, B. L., and M. R. Wilmes-Riesenberg. 1992. Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J. Bacteriol. 174:2124-2130. [PMC free article] [PubMed] [Google Scholar]

467. Wei, B. L., A.-M. Brun-Zinkernagel, J. W. Simecka, B. M. Pruss, P. Babitzke, and T. Romeo. 2001. Positive regulation of motility and flhDC expression by the RNA- binding protein CsrA of Escherichia coli. Mol. Microbiol. 40:245-256. [PubMed] [Google Scholar]

468. Weickert, M. J., and G. H. Chambliss. 1990. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilits. Proc. Natl. Acad. Sci. USA 87:6238-6242. [PMC free article] [PubMed] [Google Scholar]

469. Wendisch, V. F. 2003. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J. Biotechnol. 104:273-285. [PubMed] [Google Scholar]

470. Wendisch, V. F., M. Spies, D. J. Reinscheid, S. Schnicke, H. Sahm, and B. J. Eikmanns. 1997. Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch. Microbiol. 168:262-269. [PubMed] [Google Scholar]

471. West, A. H., and A. M. Stock. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26:369-376. [PubMed] [Google Scholar]

472. Wilde, R. J., and J. R. Guest. 1986. Transcript analysis of the citrate synthase and succinate dehydrogenase genes of Escherichia coli K12. J. Gen. Microbiol. 132:3239-3251. [PubMed] [Google Scholar]

473. Wolfe, A. J., D.-E. Chang, J. D. Walker, J. E. Seitz-Partridge, M. D. Vidaurri, C. F. Lange, B. M. Prüß, M. C. Henk, J. C. Larkin, and T. Conway. 2003. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol. Microbiol. 48:977-988. [PubMed] [Google Scholar]

474. Wolfe, A. J., M. P. Conley, and H. C. Berg. 1988. Acetyladenylate plays a role in controlling the direction of flagellar rotation. Proc. Natl. Acad. Sci. USA 85:6711-6715. [PMC free article] [PubMed] [Google Scholar]

475. Woodnutt, G., and D. S. Parker. 1986. Acetate metabolism by tissues of the rabbit. Comp. Biochem. Physiol. Ser. B. 85:487-490. [PubMed] [Google Scholar]

476. Wyborn, N. R., S. L. Messenger, R. A. Henderson, G. Sawers, R. E. Roberts, M. M. Attwood, and J. Green. 2002. Expression of the Escherichia coli yfiD gene responds to intracellular pH and reduces the accumulation of acidic metabolic end products. Microbiology 148:1015-1026. [PubMed] [Google Scholar]

477. Xu, B., M. Jahic, and S.-O. Enfors. 1999. Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol. Prog. 15:81-90. [PubMed] [Google Scholar]

478. Yamamoto, K., and A. Ishihama. 2003. Two different modes of transcription repression of the Escherichia coli acetate operon by IcIR. Mol. Microbiol. 47:183-194. [PubMed] [Google Scholar]

479. Yamamoto-Otake, H. M., A. Matsuyama, and F. Nakano. 1990. Cloning of a gene coding for phosphotransacetylase from Escherichia coli. Appl. Microbiol. Biotechnol. 33:680-682. [PubMed] [Google Scholar]

480. Yamashita, H., A. Fukuura, T. Nakamura, T. Kaneyuki, M. Kimoto, M. Hiemori, and H. Tsuji. 2002. Purification and partial characterization of acetyl-coA synthetase in rat liver mitochondria. J. Nutr. Sci. Vitaminol. (Tokyo) 48:359-364. [PubMed] [Google Scholar]

481. Yamashita, H., T. Kaneyuki, and K. Tagawa. 2001. Production of acetate in the liver and its utilization in peripheral tissues. Biochim. Biophys. Acta 1532:79-87. [PubMed] [Google Scholar]

482. Yang, Y. T., A. A. Aristidou, K. Y. San, and G. N. Bennett. 1999. Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase. Metab. Eng. 1:26-34. [PubMed] [Google Scholar]

483. Yang, Y. T., G. N. Bennett, and K. Y. San. 1999. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol. Bioeng. 65:291-297. [PubMed] [Google Scholar]

484. Zahrt, T. C., C. Wozniak, D. Jones, and A. Trevett. 2003. Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect. Immun. 71:6962-6970. [PMC free article] [PubMed] [Google Scholar]

485. Zalieckas, J. M., J. Wray, L. V., and S. H. Fisher. 1998. Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression. J. Bacteriol. 180:6649-6654. [PMC free article] [PubMed] [Google Scholar]

486. Zapf, J. W., J. A. Hoch, and J. M. Whiteley. 1996. A phosphotransferase activity of the Bacillus subtilis sporulation protein Spo0F that employs phosphoramidate substrates. Biochemistry 35:2926-2933. [PubMed] [Google Scholar]

487. Zeeman, A. M., and H. Y. Steensma. 2003. The acetyl co-enzyme A synthetase genes of Kluyveromyces lactis. Yeast 20:13-23. [PubMed] [Google Scholar]

488. Zhu, P. P., and A. Peterkofsky. 1996. Sequence and organization of genes encoding enzymes involved in pyruvate metabolism in Mycoplasma capricolum. Protein Sci. 5:1719-1736. [PMC free article] [PubMed] [Google Scholar]


Page 2

Summary of pta and ackA mutant phenotypes relative to the wild-type

pta mutantackA mutant
No or lowa excreted acetateLowb excreted acetate
Reduced specific acetate productionaWild-type specific acetate productionb
Increased pyruvate, lactate, and glutamate excretionaNDc
Reduced formate and H2 excretionaND
Slow growth under acetogenic conditionsaSlow growth under acetogenic conditionsa
No anaerobic growth on glucoseAnaerobic growth on glucose
Poor growth at high acetate concentrationPoor growth at high acetate concentration
Increased expression of the TCA cycleIncreased expression of the TCA cycle
Increased flux toward pyruvateIncreased flux toward pyruvate
Increased expression of YfiDIncreased expression of YfiD
Increased expression of acid resistance effectorsIncreased expression of acid resistance effectors
Increased acid resistanceND
Increased expression of chaperones and heat shock proteinsIncreased expression of chaperones and heat shock proteins
Increased expression of some envelope proteins including OmpCIncreased expression of some envelope proteins but not OmpC
Decreased expression of some envelope proteins including OmpFDecreased expression of some envelope proteins including OmpF
No acetyl∼PAcetyl∼P accumulation
Excess flagella, especially at 37°CFew flagella, especially at 37°C
Few piliMany pili
NonmucoidMucoid, even at 37°C
Poor survival during carbon starvationWild-type survival during carbon starvation