Exercícios multipla escolha raiz quadrada 6o ano doc

Raízes quadradas são o oposto de elevar um número ao quadrado ou multiplicá-lo por ele mesmo. Por exemplo, 4 ao quadrado é igual a $latex 16({{4}^2}=16)$, então a raiz quadrada de 16 é igual a 4. Usando símbolos matemáticos, temos:

$latex \sqrt{16}=4$

O símbolo “√” nos diz que devemos calcular a raiz quadrada de um número. É importante lembrar que todos os números, na verdade, têm duas raízes quadradas. Por exemplo, quatro vezes quatro é igual a dezesseis, mas quatro negativo vezes quatro negativo também é igual a dezesseis. Então nós temos:

$latex \sqrt{16}=\pm 4$

Em alguns casos, podemos ignorar as raízes quadradas negativas dos números, mas às vezes é importante lembrar que todo número tem duas raízes quadradas.

Um dos desafios com raízes quadradas pode ser simplificar grandes raízes quadradas. Para fazer isso, temos que seguir algumas regras simples. Podemos fatorar raízes quadradas da mesma maneira que fatoramos números. Por exemplo, se temos a raiz quadrada de seis, podemos escrever o seguinte:

$latex \sqrt{6}=\sqrt{2} \sqrt{3}$

Exercícios de raiz quadrada resolvidos

Esses exercícios de raiz quadrada podem ser usados ​​para dominar a resolução de problemas de raiz quadrada. Cada exercício tem sua respectiva solução, mas é recomendável que você tente resolver os exercícios antes de olhar a resposta. Nos exercícios a seguir, levamos em consideração apenas a raiz quadrada positiva do número.

Encontre o seguinte: $latex \sqrt{25}$.

Temos que encontrar um número que, quando multiplicado por ele mesmo, produz 25. A resposta é 5 porque se multiplicarmos 5 por ele mesmo, obteremos:

$latex 5\times 5=25$

Encontre a raiz quadrada de 121: $latex \sqrt{121}$.

Temos que encontrar um número que, quando multiplicado por ele mesmo, resulta em 121. Esse número é igual a 11, pois quando elevamos ao quadrado 11, obtemos:

$latex {{11}^2}=121$

Encontre o seguinte: $latex \sqrt{32}$.

Neste caso, não há número inteiro que possa ser multiplicado por ele mesmo para obter 32. No entanto, podemos fatorar esta expressão e escrever da seguinte maneira:

$latex \sqrt{32}=\sqrt{16}\sqrt{2}$

Agora, podemos encontrar a raiz quadrada de 16. Sabemos que multiplicando por 4 por si só obtemos 16, então temos:

$latex \sqrt{16}\sqrt{2}=4\sqrt{2}$

Simplifique o seguinte: $latex \sqrt{50}$.

Nesse caso, também não há um número inteiro que, quando multiplicado por ele mesmo, resulta em 50. Então, reescrevemos essa raiz quadrada da seguinte maneira:

$latex \sqrt{50}=\sqrt{25}\sqrt{2}$

Semelhante ao problema anterior, podemos encontrar um número inteiro que resulta em 25 quando elevado ao quadrado. Este número é 5, então temos:

$latex \sqrt{25}\sqrt{2}=5\sqrt{2}$

Simplifique o seguinte: $latex \sqrt{132}$.

132 é um número grande e é um pouco difícil saber o que podemos fazer. No entanto, podemos ver que é divisível por 2, então podemos escrever:

$latex \sqrt{132}=\sqrt{66}\sqrt{2}$

Também sabemos que 66 é divisível por 2, então escrevemos:

$latex \sqrt{66}\sqrt{2}=\sqrt{33}\sqrt{2}\sqrt{2}$

Se multiplicarmos a raiz quadrada de um número por ele mesmo, obteremos o número original. Então, temos:

$latex \sqrt{33}\sqrt{2}\sqrt{2}=2\sqrt{33}$

Exercícios de raiz quadrada para resolver

Pratique o que você aprendeu e teste seu conhecimento com os seguintes exercícios de raiz quadrada. Escolha uma resposta e clique em “Verificar” para verificar se você selecionou a resposta correta. Os exercícios resolvidos acima podem servir como um guia se você tiver algum problema.

Veja também

Você quer aprender mais sobre tópicos algébricos? Olha para estas páginas:

  • Exercícios de Números Primos e Compostos
  • Exercícios de Notação Científica

Teste seus conhecimentos com esta lista de exercícios sobre raiz quadrada e verifique se você domina suas propriedades.

Questão 1

Calculando a raiz quadrada de 2304, encontramos como solução:                                                 

A) 42

B) 44

C) 48

D) 52

E) 54

Questão 2

Uma região no formato de quadrado possui área igual a 729 m². Diante disso, qual é a medida do lado dessa região, em metros?

A) 19

B) 21

C) 23

D) 25

E) 27

Questão 3

Ao resolver a seguinte expressão:

\(\sqrt{\sqrt{81}}+\sqrt{16}-\sqrt{225}+\sqrt{144}\)

Encontramos como resultado

A) 1

B) 2

C) 3

D) 4

E) 5

Questão 4

Um retângulo possui comprimento e largura medindo, respectivamente, \(\sqrt{18}\) e \(\sqrt{72}\) metros. O perímetro desse retângulo, em metros, é de:

A) \(2\sqrt3\)

B) \(9\sqrt2\)

C) \(18\sqrt2\)

D) \(15\sqrt3\)

Questão 5

Sobre as propriedades da raiz quadrada, julgue as afirmativas a seguir:

I. \(\ \sqrt4\cdot\sqrt5=\sqrt{20}\)

II. \(\ \sqrt2+\sqrt3=\sqrt5\)

III. \(\sqrt4\ -\sqrt3=\sqrt1\)

A) Somente a afirmativa I é verdadeira.

B) Somente a afirmativa II é verdadeira.

C) Somente a afirmativa III é verdadeira.

D) Somente as afirmativas I e II são verdadeiras.

E) Somente as afirmativas II e III são verdadeiras.

Questão 6

(Cefet/RJ 2015) Considere m a média aritmética dos números 1, 2, 3, 4 e 5. Qual é a opção que mais se aproxima do resultado da expressão abaixo?

A) 1,1

B) 1,2

C) 1,3

D) 1,4

Questão 7

(IFSC 2018) Analise as afirmações seguintes:

I.  \(-5^2-\sqrt{16}\bullet\left(-10\right)\div\left(\sqrt5\right)^2=-17\)

II. \(35\div\left(3+\sqrt{81}-2^3+1\right)\times2=10\)

III. Efetuando-se \(\left(3+\sqrt5\right)\left(3-\sqrt5\right)\), obtém-se um número múltiplo de 2.

Assinale a alternativa CORRETA.

A) Todas são verdadeiras.

B) Apenas I e III são verdadeiras.

C) Todas são falsas.

D) Apenas uma das afirmações é verdadeira.

E) Apenas II e III são verdadeiras.

Questão 8

Sobre a raiz quadrada, julgue as afirmativas a seguir, utilizando V para verdadeira e F para falsa:

I. \(\sqrt{-4}=-2\)

II. \(\sqrt{2+7}=\sqrt2+\sqrt7\)

III. \(\sqrt{\sqrt{16}}\ =\ 2\)

As afirmativas são, respectivamente:

A) FFF

B) VVV

C) VFF

D) FFV

E) FVV

Questão 9

(PM Piauí 2009 Nucepe) A expressão \(\sqrt{18}+\sqrt{50}\) é equivalente a:

A) \(\ 2\sqrt2\)

B) \(\ 3\sqrt2\)

C) \(8\sqrt2\)

D) \(15\sqrt2\)

E) \(8\sqrt3\)

Questão 10

Simplificando a seguinte expressão:

\(\sqrt{4\ -\ \sqrt5}\ \cdot\sqrt{4+\sqrt5}\)

encontramos como resultado

A) 2

B) 3

C) 4

D) 6

E) 9

Questão 11

Sabendo que os lados do seguinte retângulo foram dados em metros, a forma simplificada da área desse polígono é igual a:

A) \(5\sqrt6\) m

B) \(10\sqrt6\) m

C) \(6\sqrt5\) m

D) \(5\sqrt2\) m

E) \(\ 4\sqrt{10}\) m

Questão 12

(UFPI) Desenvolvendo a expressão:

\(\left(\sqrt[2]{27}+\sqrt[2]{3}-1\right)^2\)

Encontramos um número no formato:

\(a+b\sqrt[2]{3}\)

Com a e b inteiros. O valor de a + b é:

A) 59

B) 47

C) 41

D) 57

E) 1

Resposta - Questão 1

Alternativa C

Realizando a fatoração de 2304:

2304\(2^2\cdot2^2\cdot2^2\cdot2^2\cdot3^2\)

Portanto:

\(\sqrt{2304}=\sqrt{2^2\cdot2^2\cdot2^2\cdot2^2\cdot3^2}=2\cdot2\cdot2\cdot2\cdot3=48\)

Resposta - Questão 2

Alternativa E

Para encontrar a medida do lado da região que possui formato de quadrado, basta calcularmos a raiz quadrada de 729.

Logo, temos que:

\(729=3^2\cdot3^2\cdot3^2\)

\(\sqrt{729}=\sqrt{3^2\cdot3^2\cdot3^2}=3\cdot3\cdot3=\ 27\ m\)

Resposta - Questão 3

Alternativa B

Calculando cada uma das raízes quadradas:

\(\sqrt9+4-15+12\)

\(3\ +\ 4\ -\ 15\ +\ 12\)

\(4\ \)

Resposta - Questão 4

Alternativa C

Sabemos que:

\(18=3^2\cdot2\)

\(72=2^2\cdot2\cdot3^2\)

Logo, temos que:

\(\sqrt{18}=\sqrt{3^2\cdot2}=3\sqrt2\)

\(\sqrt{72}=\sqrt{2^2\cdot2\cdot3}=2\cdot3\sqrt2=6\sqrt2\)

Portanto, o perímetro desse retângulo é igual a:

\(P=2\left(3\sqrt2+6\sqrt2\right)\)

\(P=2\cdot9\sqrt2\)

\(P=18\sqrt2\)

Resposta - Questão 5

Alternativa A

I. Verdadeira

Uma das propriedades da raiz quadrada é que podemos multiplicar o radicando, como foi feito. Logo, temos que:

\(\sqrt4\cdot\sqrt5=\sqrt{4\cdot5}=\sqrt{20}\)

II. Falsa

A soma de duas raízes gera resultado diferente da soma dos radicandos. Assim, não podemos somá-los.

III. Falsa

A diferença de duas raízes não é igual à diferença dos seus radicandos, logo, essa não é uma propriedade da raiz quadrada.

Resposta - Questão 6

Alternativa D

De início, calcularemos a média aritmética entre 1, 2, 3, 4 e 5:

\(m=\frac{1+2+3+4+5}{5}\)

\(m=\frac{15}{5}\)

\(m\ =\ 3\)

Substituindo m = 1 na expressão:

\(\sqrt{\frac{\left(1-3\right)^2+\left(2-3\right)^2+\left(3-3\right)^2+\left(4-3\right)^2+\left(5-3\right)^2}{5}}\)

\(\sqrt{\frac{\left(-2\right)^2+\left(-1\right)^2+0^2+1^2+2^2}{5}}\)

\(\sqrt{\frac{4+1+0+1+4}{5}}\)

\(\sqrt{\frac{10}{5}}\)

\(\sqrt2\ \approx1,4\)

Resposta - Questão 7

Alternativa B

I. Verdadeira

\(-5^2-\sqrt{16}\bullet\left(-10\right)\div\left(\sqrt5\right)^2=-17\)

\(-25-4\bullet\left(-10\right)\div5=-17\)

\(-25\ +\ 40\ \div\ 5\ =\ -17\)

\(-25\ +\ 8\ =\ -17\)

\(-17\ =\ -17\)

II. Falsa

\(35\div\left(3+\sqrt{81}-2^3+1\right)\times2=10\)

\(35\div\left(3+9-8+1\right)\times2=10\)

\(35\ \div\ 5\ \times\ 2\ =10\)

\(7\ \times\ 2\ =10\)

\(14\ =10\ \)

III. Verdadeira

\(\left(3+\sqrt5\right)\left(3-\sqrt5\right)=3^2-\sqrt{5^2}\ =\ 9\ -\ 5\ =\ 4\)

Resposta - Questão 8

Alternativa D

I. Falsa

Não há raiz quadrada de números negativos.

II. Falsa

Sabemos que 2 + 7 = 9 e que \(\sqrt9=3\). Por outro lado, \(\sqrt2+\sqrt7\ \) é diferente de 3, logo, essa não é uma propriedade possível para a radiciação.

III. Verdadeira

\(\sqrt{\sqrt{16}}=\sqrt4=2\)

Resposta - Questão 9

Alternativa C

Simplificando, temos que:

\(\sqrt{18}+\sqrt{50}\)

\(\sqrt{2\cdot9}+\sqrt{2\cdot25}\)

\(3\sqrt2+5\sqrt2\)

\(8\sqrt2\)

Resposta - Questão 10

Alternativa B

\(\sqrt{4\ -\ \sqrt5}\ \cdot\sqrt{4+\sqrt5}\)

\(\sqrt{\left(4-\sqrt5\right)\cdot\left(4+\sqrt5\right)}\)

\(\sqrt{4^2-\sqrt{5^2}}\)

\(\sqrt{16-5}\)

\(3\)

Resposta - Questão 11

Alternativa B

Sabemos que a área do retângulo é igual ao produto da base pela altura:

\(A=\sqrt{30}\cdot\sqrt{20}\)

\(A=\sqrt{30\cdot20}\)

\(A\ =\ \sqrt{\left(3\cdot5\cdot2\right)\cdot\left(2^2\cdot5\right)}\)

\(A=\sqrt{3\cdot2\cdot2^2\cdot5^2}\)

\(A=2\cdot5\sqrt{3\cdot2}\)

\(A=10\sqrt{6\ }\)

Resposta - Questão 12

Alternativa C

Simplificando a expressão:

\(\left(\sqrt[2]{27}+\sqrt[2]{3}-1\right)^2\)

\(\left(\sqrt[2]{3\cdot3^2}+\sqrt[2]{3}-1\right)^2\)

\(\left(3\sqrt[2]{3}+\sqrt[2]{3}-1\right)^2\)

\(\left(4\sqrt[2]{3}-1\right)^2\)

Calculando o quadrado da diferença:

\(16\cdot3-2\cdot4\sqrt[2]{3}+1^2\)

\(48-8\sqrt[2]{3}+1\)

\(49-8\sqrt[2]{3}\)

Se a = 49 e b = – 8, então:

a + b = 49 – 8 = 41