Qual é o gráfico que representa essa equação

A equação geral da reta é uma maneira algébrica de se estudar o comportamento de uma reta no plano cartesiano. Na geometria analítica, estudamos a fundo objetos da geometria plana representados no plano cartesiano. Um desses objetos é a reta, que pode ter seu comportamento descrito pela equação ax + by + c = 0, os coeficientes a, b e c são todos números reais, em que a e b são diferentes de zero.

Para encontrar a equação geral da reta, é necessário conhecer pelo menos dois pontos pertencentes a essa reta. Conhecendo os dois pontos da reta, existem dois métodos distintos para se encontrar a equação geral da reta. Além da equação geral da reta, existem outras que podem descrever esse comportamento, sendo elas a equação reduzida da reta e a equação segmentária da reta.

Leia também: O que é um par ordenado?

Passo a passo para encontrar a equação geral da reta

Qual é o gráfico que representa essa equação
Representação da reta no plano cartesiano.

Para encontrarmos a equação geral da reta, existem dois métodos, um deles utiliza a equação reduzida da reta para chegar-se à equação geral, já o outro é o cálculo do determinante de ordem 3, em ambos os métodos, é necessário conhecer, pelo menos, dois pontos da reta.

Antes de compreender como encontrar a equação da reta geral, veja alguns exemplos.

Exemplo de equação geral da reta:

a) – 3x + 4y + 7 = 0

b) x + y – 3 = 0

c) 2x – 5y  = 0

Então, para encontrar a equação geral de uma reta, é necessário conhecer dois pontos dessa reta. Seja A(xA, yA) e B(xB, yB) dois pontos pertencentes à reta cujos valores das coordenadas são conhecidos, para encontrar a equação geral da reta, podemos seguir alguns passos ao definirmos o método que será utilizado.

Para encontrar a equação geral da reta, utilizaremos duas fórmulas:

Em que (xp, yp) é um dos pontos que conhecemos.

Exemplo:

A(2,1) e B(5,7)

1º passo: encontrar o coeficiente angular m.

2º passo: escolher um dos pontos e substituir os valores de m e desse ponto na equação, igualando-a a zero.

y – yp = m (x – xp)

Sabendo que m = 2, e escolhendo o ponto A(2,1), temos que:

y – 1 = 2 (x – 2)

y – 1 = 2x – 4

y – 2x – 1 + 4 = 0

– 2x + y  + 3 = 0 → equação geral da reta r.

Veja também: Como calcular a distância entre dois pontos no espaço?

Vamos construir a matriz com os dois pontos que conhecemos: os valores A(xA, yA), B(xB, yB) e um ponto arbitrário, e C (x,y).

1º passo: montar a matriz.

2º passo: resolver a equação det(M) = 0.

Para que os pontos estejam alinhados, o valor do determinante da matriz tem que ser igual a zero, por isso, igualamos o determinante da matriz M a zero.

Exemplo:

Utilizando os pontos do exemplo anterior, encontraremos a equação geral da reta.

A(2,1), B(5,7) e C(x,y)

Primeiro vamos montar a matriz:

Agora calcularemos o seu determinante:

det(M) = 14 + x + 5y – 7x – 5 – 2y = 0

det(M) = 3y – 5x + 9 = 0

Note que essa é a equação de uma reta, sendo assim, a equação geral da reta que passa pelos pontos A, B e C é – 5x + 3y  + 9 = 0.

Equação reduzida da reta

Outra forma de representar a equação da reta é a equação reduzida. A diferença da equação geral para a equação reduzida é que, na equação geral, o segundo membro é sempre igual a zero, agora, na equação reduzida, vamos sempre isolar o y no primeiro membro. A equação reduzida da reta é sempre descrita por y = mx + n, em que m e n são números reais, com m diferente de zero.

Conhecendo a equação geral da reta, é possível encontrar a reduzida apenas isolando o y.

Exemplo:

– 5x + 3y + 9 = 0

Vamos isolar o y no primeiro membro:

Toda reta pode ser representada por uma equação geral e por uma equação reduzida. Muitas vezes a equação reduzida é mais interessante. Já que o m é conhecido como coeficiente angular,  com base nele é possível obter-se informações importantes da reta, pois seu valor traz informações sobre a inclinação dela. Já o n é o coeficiente linear, que é o ponto no plano cartesiano em que a reta corta o eixo y.

Equação segmentária da reta

Assim como a equação geral e a equação reduzida da reta, a equação segmentária é uma maneira de representar a equação da reta. A equação segmentária tem esse nome porque ela nos informa os pontos em que a reta intercepta os eixos x e y. A equação segmentária da reta é descrita por:

Exemplo:

Encontre a equação segmentária da reta -5x + 3y – 9 = 0.

Vamos isolar o termo independente 9 no segundo membro:

-5x + 3y = 9

Agora vamos dividir toda a equação por 9:

Agora vamos reescrever cada um dos termos colocando c/a e c/b.

Acesse também: Qual é a equação geral da circunferência?

Exercícios resolvidos

Questão 1 – A representação da equação 4x – 2y – 6 = 0, em sua forma reduzida, é:

A) y = 2x – 3 B) y = -2x + 3 C) y = 2x + 3 D) y = -2x – 3

E) 2y = 4x – 6

Resolução

Alternativa A

Primeiro vamos isolar o y:

-2y = -4x + 6, como o coeficiente de y é negativo, multiplicaremos a equação por -1.

2y = 4x – 6, dividindo todos os termos por 2, encontraremos a equação reduzida.

y = 2x – 3

Questão 2 – A equação geral da reta representada no plano cartesiano é:

A) 2x + 2y – 6 = 0 B) x + y – 9 = 0 C) 2x – y + 3 = 0 D) -2x + y + 3 = 0

E) x + 2y – 3 = 0

Resolução

Alternativa D

Primeiro vamos identificar os dois pontos, são eles A(2,1) e B(3,3). Seja P(x,y) um ponto qualquer da reta, devemos calcular o determinante da matriz M e igualar a zero, colocando em cada linha o valor de x, y e 1.

det(M) = 6 + x + 3y – 3x – 3 – 2y = 0

det(M) = -2x + y + 3 = 0

Definimos como função do 2º grau, ou função quadrática, a função R → R, ou seja, uma função em que o domínio e o contradomínio são iguais ao conjunto dos números reais, e que possui a lei de formação f(x) = ax² +bx +c.

O gráfico da função quadrática é sempre uma parábola e possui elementos importantes, que são:

  • as raízes da função quadrática, calculadas pelo x’ e x”;
  • o vértice da parábola, que pode ser encontrado a partir de fórmulas específicas.

Leia também: O que são domínio, contradomínio e imagem de uma função?

O que é uma função do 2º grau?

Uma função polinomial é conhecida como função do 2º grau, ou também como função quadrática, quando em sua lei de formação ela possui um polinômio de grau dois, ou seja, f(x) = ax² +bx +c, em que a, b e c são números reais, e a ≠ 0. Além da lei de formação, essa função possui domínio e contradomínio no conjunto dos números reais, ou seja, f: R→ R.

Qual é o gráfico que representa essa equação
O gráfico da função do 2º grau é sempre uma parábola.

Exemplos:

a) f(x) = 2x²+3x + 1

a = 2

b = 3

c=1

b) g(x) = -x² + 4

a = -1

b = 0

c = 4

c) h(x) = x² – x

a = 1

b = -1

c = 0

Para encontrar o valor numérico de qualquer função, conhecendo a sua lei de formação, basta realizarmos a substituição do valor de x para encontrar a imagem f(x).

Exemplos:

Dada a função f(x) = x² + 2x – 3, calcule:

a) f(0)
f(0) = 0² +2·0 – 3 = 0 + 0 – 3 = –3

b) f(1)
f(1) = 1² + 2·1 + 3  = 1+2 – 3 = 0

c) f(2)
f(2) = 2² + 2·2+3 = 4+4–3=5

d) f(-2) f(-2) = (-2)² + 2·(-2) – 3

f(-2) = 4  - 4 – 3 = –3

Veja também: Quais são as diferenças entre equação e função?

Raízes da função de 2º grau

Para encontrar as raízes da função quadrática, conhecidas também como zero da função, é necessário o domínio das equações do segundo grau. Para resolver uma equação do segundo grau, há vários métodos, como a fórmula de Bhaskara e a soma e produto.

A raízes de uma função quadrática são os valores de x que fazem com que f(x) = 0. Sendo assim, para encontrar as raízes de uma equação do 2º grau, faremos ax² + bx + c = 0.

Exemplo:

f(x) = x² +2x – 3

a = 1

b = 2

c = –3

Δ =b² – 4ac

Δ=2² – 4 ·1·(-3)

Δ=4 +12

Δ = 16

Então, os zeros da função são {1, -3}.

O valor do delta nos permite saber quantos zeros a função quadrática vai ter. Podemos separar em três casos:

  • Δ > 0 → a função possui duas raízes reais distintas;
  • Δ = 0 → a função possui uma única raiz real;
  • Δ < 0 → a função não possui raiz real.

Gráfico de uma função do 2º grau

O gráfico de uma função do 2º grau é representado sempre por uma parábola. Existem duas possibilidades, dependendo do valor do coeficiente “a”: a concavidade da parábola pode ser para cima ou para baixo.

Se a > 0, a concavidade é para cima:

O ponto V representa o que conhecemos como vértice da parábola, que, nesse caso, é o ponto de mínimo, ou seja, o menor valor que f(x) pode assumir.

Se a < 0, a concavidade é para baixo:

Quando isso ocorre, perceba que, nesse caso, o vértice é o ponto de máximo da função, ou seja, maior valor que f(x) pode assumir.

Para fazer o esboço do gráfico, precisamos encontrar:

  • os zeros da função;
  • o ponto em que a função intercepta o eixo y;
  • o ponto de máximo ou de mínimo da parábola, que conhecemos como vértice da parábola.

Veja também: Cinco passos para construir o gráfico de uma função do 2º grau

Vértice da parábola

Como vimos anteriormente, o vértice da parábola é o ponto de mínimo ou de máximo do gráfico. Para encontrar o valor de x e y no vértice, utilizamos uma fórmula específica. Vale ressaltar que o vértice é um ponto V, logo ele possui coordenadas, representadas por xv e yv.

Para calcular o valor de V (xv, yv), utilizamos as fórmulas:

Exemplo:

Encontre o vértice da parábola f(x) = –x² +4x – 3.

a = -1.

b = 4.

c = -3

Calculando o Δ e aplicando a fórmula de Bhaskara, temos que:

Δ=b² – 4ac

Δ=4² – 4(-1) (-3)

Δ=16 – 12

 Δ=4

Representação gráfica de uma função do 2º grau

Para realizar o esboço do gráfico de uma função, é necessário encontrar três elementos: os zeros ou raízes da função, o vértice e o ponto em que a função toca o eixo y, conforme o exemplo a seguir.

Exemplo:

f(x) = x² – 6x + 8

1º passo: As raízes da função são os pontos em que a parábola toca o eixo x, logo queremos encontrar os pontos (x’, 0) e (x”,0).

Para isso faremos f(x) = 0, então temos que:

x² – 6x + 8=0

a= 1

b= -6

c = 8

Δ = b² -4ac

Δ = (-6)² -4·1·8

Δ = 36 – 32

Δ = 4

Já temos dois pontos para o gráfico, o ponto A(4,0) e o ponto B (2,0).

2º passo: encontrar o vértice da parábola.

Então o vértice da parábola é o ponto V(3, -1).

passo: encontrar o ponto de intersecção da parábola com o eixo y.

Para isso, basta calcular f(0):

f(x) =x² – 6x + 8

f(0) = 0² -6·0 + 8

f(0) = 8

Por fim, o ponto C (0,8) pertence ao gráfico.

4º passo: Agora que temos os pontos, vamos marcá-los no plano cartesiano e fazer o esboço do gráfico da parábola.

A(4,0)

B(2,0)

V(3,-1)

C(0,8)

Acesse também: Relação entre os coeficientes e o gráfico de uma função do segundo grau

Exercícios resolvidos

Questão 1 – (Enem 2013 – PPL) Uma pequena fábrica vende seus bonés em pacotes com quantidades de unidades variáveis. O lucro obtido é dado pela expressão L(x)= -x²+ 12x - 20, onde x representa a quantidade de bonés contidos no pacote. A empresa pretende fazer um único tipo de empacotamento, obtendo um lucro máximo.

Para obter o lucro máximo nas vendas, os pacotes devem conter uma quantidade de bonés igual a:

A) 4 B) 6 C) 9 D) 10

E) 14

Resolução

Alternativa B.

Sabendo que a função lucro L(x) é uma função do 2º grau, a = -1, ou seja, o seu gráfico é uma parábola com concavidade para baixo, queremos encontrar o ponto de máximo da função, ou seja, o vértice. Como x representa a quantidade de bonés, então a quantidade de bonés que maximiza o lucro é o xv.

b = 12

a = -1

Questão 2 – (Enem 2009) Um posto de combustível vende 10.000 litros de álcool por dia a R$ 1,50 cada litro. Seu proprietário percebeu que, para cada centavo de desconto que concedia por litro, eram vendidos 100 litros a mais por dia. Por exemplo, no dia em que o preço do álcool foi R$ 1,48, foram vendidos 10.200 litros.

Considerando x o valor, em centavos, do desconto dado no preço de cada litro, e V o valor, em R$, arrecadado por dia com a venda do álcool, então a expressão que relaciona V e x é

A) V = 10.000 + 50x – x². B) V = 10.000 + 50x + x². C) V = 15.000 – 50x – x². D) V = 15.000 + 50x – x².

E) V = 15.000 – 50x + x².

Resolução

Alternativa D.

Analisando a situação, com o combustível a R$ 1,50, são vendidos 10.000 litros, logo é faturado um total de:

10.000·1,50 = 15.000 → R$ 15.000,00.

É possível perceber que o valor arrecadado (V) é igual ao produto da quantidade Q pelo preço P.

V = Q . P

Quando se abaixa 1 centavo, a quantidade vendida aumenta em 100 litros, ou seja:

Q = 10.000 + 100x

Por outro lado, o preço terá o desconto de 1 centavo, o que podemos representar por:

P = 1,50 – 0,01x

Sendo assim, o valor é calculado por:

V = Q·P

V = (10.000 + 100x) ·(1,50 – 0,01x)

Aplicando a propriedade distributiva, temos que:

V = 15.000 – 100x + 150x – x²
V = 15.000 +50x – x²