When a researcher manipulates a variable to see what effect the manipulation has on another variable The research design is a N group of answer choices?

The independent variable (IV) is the characteristic of a psychology experiment that is manipulated or changed by researchers, not by other variables in the experiment.

For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to the independent variable (studying) result in significant changes to the dependent variable (the test results).

If you are having trouble identifying the independent variables of an experiment, there are some questions that may help:

  • Is the variable one that is being manipulated by the experimenters?
  • Are researchers trying to identify how the variable influences another variable?
  • Is the variable something that cannot be changed but that is not dependent on other variables in the experiment?

Researchers are interested in investigating the effects of the independent variable on other variables, which are known as dependent variables (DV). The independent variable is one that the researchers either manipulate (such as the amount of something) or that already exists but is not dependent upon other variables (such as the age of the participants).

There can by all different types of independent variables. The independent variables in a particular experiment all depend on the hypothesis and what the experimenters are investigating.

Independent variables also have different levels. In some experiments, there may only be one level of an IV. In other cases, multiple levels of the IV may be used to look at the range of effects that the variable may have.

In an experiment on the effects of the type of diet on weight loss, for example, researchers might look at several different types of diet. Each type of diet that the experimenters look at would be a different level of the independent variable while weight loss would always be the dependent variable.

In order to understand how the independent variable is used in experiments, it can be helpful to look at some different examples.

A researcher wants to determine if the color of an office has any effect on worker productivity. In an experiment, one group of workers performs a task in a yellow room while another performs the same task in a blue room. In this example, the color of the office is the independent variable.

A business wants to determine if giving employees more control over how to do their work leads to increased job satisfaction. In an experiment, one group of workers is given a great deal of input in how they perform their work, while the other group is not. The amount of input the workers have over their work is the independent variable in this example.

Educators are interested in whether participating in after-school math tutoring can increase scores on standardized math exams. In an experiment, one group of students attends an after-school tutoring session twice a week while another group of students does not receive this additional assistance. In this case, participation in after-school math tutoring is the independent variable.

Researchers want to determine if a new type of treatment will lead to a reduction in anxiety for patients living with social phobia. In an experiment, some volunteers receive the new treatment, another group receives a different treatment, and a third group receives no treatment. The independent variable in this example is the type of therapy.

Sometimes varying the independent variables will result in changes in the dependent variables. In other cases, researchers might find that changes in the independent variables have no effect on the variables that are being measured.

At the outset of an experiment, it is important for researchers to operationally define the independent variable. An operational definition describes exactly what the independent variable is and how it is measured. Doing this helps ensure that the experiments know exactly what they are looking at or manipulating, allowing them to measure it and determine if it is the IV that is causing changes in the DV.

If you are designing an experiment, here are a few tips for choosing an independent variable (or variables):

  • Select independent variables that you think will cause changes in another variable. Come up with a hypothesis for what you expect to happen.
  • Look at other experiments for examples and identify different types of independent variables.
  • Keep your control group and experimental groups similar in other characteristics, but vary only the treatment they receive in terms of the independent variable. For example, your control group will receive either no treatment or no changes in the independent variable while your experimental group will receive the treatment or a different level of the independent variable.

It is also important to be aware that there may be other variables that might influence the results of an experiment. Two other kinds of variables that might influence the outcome include:

  • Extraneous variables: These are variables that might affect the relationships between the independent variable and the dependent variable; experimenters usually try to identify and control for these variables. 
  • Confounding variables: When an extraneous variable cannot be controlled for in an experiment, it is known as a confounding variable. 

Extraneous variables can also include demand characteristics (which are clues about how the participants should respond) and experimenter effects (which is when the researchers accidentally provide clues about how a participant will respond).

Verywell Mind uses only high-quality sources, including peer-reviewed studies, to support the facts within our articles. Read our editorial process to learn more about how we fact-check and keep our content accurate, reliable, and trustworthy.

  1. Weiten, W. Psychology: Themes and Variations, 10th ed. Boston, MA: Cengage Learning; 2017.

The dependent variable is the variable that is being measured or tested in an experiment. For example, in a study looking at how tutoring impacts test scores, the dependent variable would be the participants' test scores since that is what is being measured.

This is different than the independent variable in an experiment, which is a variable that stands on its own. In the example above, the independent variable would be tutoring. The independent variable (tutoring) doesn't change based on other variables, but the dependent variable (test scores) may.

One way to help identify the dependent variable is to remember that it depends on the independent variable. When researchers make changes to the independent variable, they then measure any resulting changes to the dependent variable.

The dependent variable is called "dependent" because it is thought to depend, in some way, on the variations of the independent variable.

In a psychology experiment, researchers study how changes in one variable (the independent variable) change another variable (the dependent variable). Manipulating independent variables and measuring the effect on dependent variables allows researchers to draw conclusions about cause-and-effect relationships.

These experiments can range from simple to quite complicated, so it can sometimes be a bit confusing to know how to identify the independent vs. dependent variables. Here are a couple of questions to ask to help you learn which is which.

Keep in mind that the dependent variable is the one being measured. So, if the experiment is trying to see how one variable affects another, the variable that is being affected is the dependent variable.

In many psychology experiments and studies, the dependent variable is a measure of a certain aspect of a participant's behavior. In an experiment looking at how sleep affects test performance, the dependent variable would be test performance.

The independent variable is "independent" because the experimenters are free to vary it as they need. This might mean changing the amount, duration, or type of variable that the participants in the study receive as a treatment or condition.

For example, it's common for treatment-based studies to have some subjects receive a certain treatment while others receive no treatment at all. In this case, the treatment is an independent variable because it is the one being manipulated or changed.

Independent Variable

  • Variable being manipulated

  • Doesn't change based on other variables

  • Stands on its own

Dependent Variable

  • Variable being measured

  • May change based on other variables

  • Depends on other variables

How do researchers determine what will be a good dependent variable? There are a few key features that a scientist might consider.

Stability is often a good sign of a higher quality dependent variable. If the experiment is repeated with the same participants, conditions, and experimental manipulations, the effects on the dependent variable should be very close to what they were the first time around.

A researcher might also choose dependent variables based on the complexity of their study. While some studies only have one dependent variable and one independent variable, it is possible to have several of each type.

Researchers might also want to learn how changes in a single independent variable affect several dependent variables. For example, imagine an experiment where a researcher wants to learn how the messiness of a room influences people's creativity levels.

This research might also want to see how the messiness of a room might influence a person's mood. The messiness of a room would be the independent variable and the study would have two dependent variables: level of creativity and mood.

Operationalization is defined as "translating a construct into its manifestation." In simple terms, it refers to how a variable will be measured. So, a good dependent variable is one that you are able to measure.

If measuring burnout, for instance, researchers might decide to use the Maslach Burnout Inventory. If measuring depression, they could use the Patient Health Questionnaire-9 (PHQ-9).

As you are learning to identify the dependent variables in an experiment, it can be helpful to look at examples. Here are just a few dependent variable examples in psychology research.

  • How does the amount of time spent studying influence test scores? The test scores would be the dependent variable and the amount of studying would be the independent variable. The researcher could also change the independent variable by instead evaluating how age or gender influences test scores.
  • How does stress influence memory? The dependent variable might be scores on a memory test and the independent variable might be exposure to a stressful task.
  • How does a specific therapeutic technique influence the symptoms of psychological disorders? In this case, the dependent variable might be defined as the severity of the symptoms a patient is experiencing, while the independent variable would be the use of a specific therapy method.
  • Does listening to classical music help students perform better on a math exam? The scores on the math exams are the dependent variable and classical music is the independent variable.
  • How long does it take people to respond to different sounds? The length of time it takes participants to respond to a sound is the dependent variable, while the sounds are the independent variable.
  • Do first-born children learn to speak at a younger age than second-born children? In this example, the dependent variable is the age at which the child learns to speak and the independent variable is whether the child is first- or second-born.
  • How does alcohol use influence reaction time while driving? The amount of alcohol a participant ingests is the independent variable, while their performance on the driving test is the dependent variable.

Understanding what a dependent variable is and how it is used can be helpful for interpreting different types of research that you encounter in different settings. When you are trying to determine which variables are which, remember that the independent variables are the cause while the dependent variables are the effect.

Frequently Asked Questions

  • What does the dependent variable depend on?

    The dependent variable depends on the independent variable. Thus, if the independent variable changes, the dependent variable would likely change too.

  • Where does the dependent variable go on a graph?

    The dependent variable is placed on a graph's y-axis. This is the vertical line or the line that extends upward. The independent variable is placed on the graph's x-axis or the horizontal line.

  • How do you find a dependent variable?

  • What is a controlled variable?

    A controlled variable is a variable that doesn't change during the experiment. This enables researchers to assess the relationship between the dependent and independent variables more accurately. For example, if trying to assess the impact of drinking green tea on memory, researchers might ask subjects to drink it at the same time of day. This would be a controlled variable.