9) quantos números de 4 algarismos distintos podemos formar com os algarismos 3, 5, 6, 7 e 8?

Quantos números podemos formar com 2 algarismos diferentes?

Portanto, existem 72 números de dois algarismos diferentes que podem ser escritos com os algarismos de 1 a 9. Para o algarismos das dezenas temos 9 opções e, para o algarismo das unidades, apenas 8 opções, pois não podemos repetir algarismos. Assim, temos 9 . 8 = 72 possibilidades.

Quantos números de 2 algarismos distintos podemos formar com os dígitos 2 4 6 e 8?

2 = 120 possibilidades.

Quantos números de dois algarismos distintos podemos formar com os dígitos 2 4 6 e 8 * A 15 B 10 C 12 d 18?

Pode formar 24 números diferentes!

Quantos números de dois algarismos distintos podem ser formados com os números 0 1 2 3 4 5 6 7 8 9?

Quantos números de dois algarismos distintos podem ser formados com os números: 0,1,2,3,4,5,6,7,8,9? 33. 45.

Quantos números de dois algarismos diferentes podemos escrever com os algarismos 1 2 3 e 4?

Portanto, podemos escrever 12 números com 2 algarismos diferentes com os dígitos 1, 2, 3 e 4.

Quantos números de 3 algarismos podemos escrever com os algarismos 1 2 3 4 5 6 7?

336 números. Com os algarismos 0,1, 2, 3, 4, 5, 6 e 7 quantos números naturais de 3 algarismos existem? Solução: Um número de 3 algarismos c d u é formado por 3 ordens. Como o algarismo da ordem das centenas não pode ser zero, temos então três decisões.

Quantos números de dois algarismos distintos podem ser formados com os algarismos 2 3 4 e 5?

partir do conjunto {2, 3, 4, 5, 6} Temos 5 possibilidades para o primeiro dígito. Como os dois dígitos devem ser distintos, temos 4 possibilidades para o segundo. Então, temos 17 números compostos.

Quantos números de 4 algarismos podemos formar com 1 4 7 8 e 2?

a) Quantos números de 4 algarismos podemos formar? A questão não pede distinção, ou seja, os números podem ser escolhidos mais de uma vez. 5x5x5x5 – 25x5x5 – 125×5 = 625 números d quatro algarismos.

Quantos números de dois algarismos distintos podem ser formados Usando-se os algarismos 2 3 4 e 5?

partir do conjunto {2, 3, 4, 5, 6} Temos 5 possibilidades para o primeiro dígito. Como os dois dígitos devem ser distintos, temos 4 possibilidades para o segundo. Então, temos 17 números compostos.

Quantos números pares de dois algarismos distintos podem ser formados com os algarismos de 1 a 9?

assim, temos 4.4 = 16 números distintos.

Quantos números de dois algarismos distintos podemos formar com os dígitos 3 5 7 e 6?

Quantos números de dois algarismos distintos podemos formar com os dígitos: 3, 5, 7 e 6? Então são 4 possibilidades para as dezenas, são quatro dígitos diferentes, e para as unidades serão 3, pois não queremos repetidos, portanto: 4 . 3 = 12 números de dois algarismos distintos.

Quantos números de três algarismos distintos podem ser formados com os algarismos 1 2 3 4 5 7 e 8?

3 resposta(s) 336 possibilidades!

Quantos números naturais com 4 algarismos distintos é possível formar usando os números 1 2 3 4 5 e 6?

Quantos números de quatro algarismos distintos podemos formar com os algarismos 1, 2, 3, 4, 5, 6 e 7? Solução: 7.6.5.4.3! Resposta: Podemos formar 840 números diferentes.

Quantos números de 3 algarismos podemos formar com os algarismos 1 2 3 4 5 6 a 100 B 120 C 216 D 250 e 359?

15 = 360 maneiras.

Exercicios de Análise Combinatória

Na página Análise Combinatória, você encontra a teoria necessária para resolver os exercícios aqui propostos, sendo que alguns deles possuem resposta ou alguma ajuda. Nem sempre os exercícios aparecem em ordem de dificuldade crescente.

  1. Se \(C(n,2)=28\), qual é o valor de \(n\)?
    Resposta: \(n=8\).
  2. Existe um número \(n\) natural tal que \(C(n,3)=C(n,2)\)?
  3. Usando o desenvolvimento binomial de \((1+1)^n\), demonstrar que:

    \(C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=2^n\)

  4. Usar o PIF (Princípio de Indução Matemática), para demonstrar que:

    \((p+1)C(n,p+1)=(n-p)C(n,p)\)

  5. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(n \cdot C(n-1,p)=(n-p) \cdot C(n,p)\)

  6. Se \(A(n,2)=42\), qual é o valor de \(n\)?
    Resposta: \(n=7\).
  7. Justificar a afirmação: Se \(n\) é um número primo e \(p<n\), então \(n\) é um divisor de \(C(n,p)\).
  8. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(2{\cdot}4{\cdot}6{\cdot}8{\cdot}10·...2n=(2n)n!\)

  9. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(1{\cdot}3{\cdot}5{\cdot}7{\cdot}9\cdots{\cdot}(2n-1)=\dfrac{(2n)!}{2^n n!}\)

  10. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(2{\cdot}6{\cdot}10{\cdot}14{\cdot}18{\cdot}22\cdots{\cdot}(4n-2)=\dfrac{(2n)!}{n!}\)

  11. Usar o PIF (Princípio de Indução Matemática), para demonstrar que para \(k\leq p\) vale a igualdade

    \(A(n,k)=\dfrac{A(n,p)}{A(n-k,p-k)}\)

  12. Usar o PIF (Princípio de Indução Matemática), para demonstrar que para \(k \leq n\), vale a igualdade: \(Pr(n;k+(n-k))=C(n,k)\).
  13. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(1(1!)+2(2!)+3(3!)+...+n(n!)=(n+1)!-1\)

  14. Demonstrar que para todo número \(k\) natural: \(\dfrac{1}{k!} - \dfrac{1}{(k+1)!} =\dfrac{k}{(k+1)!}\).
  15. Demonstrar que:

    \(\dfrac{1/2!+2/3!+3/4!+...+n}{(n+1)!}=\dfrac{1}{(n+1)!}\)


    Auxílio: Como esta é uma série telescópica, em que cada termo pode ser escrito como a diferença de dois outros que se anulam em sequência, basta usar o fato que para todo \(k\leq n\), vale a relação: \(\dfrac{k}{(k+1)!}=\dfrac{1}{k!} - \dfrac{1}{(k+1)!}\).
  16. Demonstrar que:

    \(A(n,p) = p[A(n-1,p-1)+A(n-2,p-1)+...+A(p-1,p-1)]\)